IMDEA-Nanociencia, Cantoblanco, E-28049 Madrid, Spain.
Nanotechnology. 2019 Jun 14;30(24):244003. doi: 10.1088/1361-6528/ab0923. Epub 2019 Feb 21.
We have designed, fabricated and tested a robust superconducting ratchet device based on topologically frustrated spin ice nanomagnets. The device is made of a magnetic Co honeycomb array embedded in a superconducting Nb film. This device is based on three simple mechanisms: (i) the topology of the Co honeycomb array frustrates in-plane magnetic configurations in the array yielding a distribution of magnetic charges which can be ordered or disordered with in-plane magnetic fields, following spin ice rules; (ii) the local vertex magnetization, which consists of a magnetic half vortex with two charged magnetic Néel walls; (iii) the interaction between superconducting vortices and the asymmetric potentials provided by the Néel walls. The combination of these elements leads to a superconducting ratchet effect. Thus, superconducting vortices driven by alternating forces and moving on magnetic half vortices generate a unidirectional net vortex flow. This ratchet effect is independent of the distribution of magnetic charges in the array.
我们设计、制造和测试了一种基于拓扑各向异性自旋冰纳米磁体的稳健超导棘轮装置。该装置由嵌入超导 Nb 薄膜中的磁性 Co 蜂巢阵列组成。该装置基于三个简单的机制:(i)Co 蜂巢阵列的拓扑结构使阵列中的面内磁构型受挫,从而产生磁荷分布,该磁荷分布可以在面内磁场下有序或无序,遵循自旋冰规则;(ii)由具有两个带磁的 Néel 壁的磁半涡旋组成的局部顶点磁化;(iii)超导涡旋与由 Néel 壁提供的不对称势之间的相互作用。这些元素的组合导致超导棘轮效应。因此,由交替力驱动并在磁半涡旋上移动的超导涡旋会产生单向净涡旋流。这种棘轮效应与阵列中磁荷的分布无关。