Abdollahi Fatemeh, Alebrahim Mohammad Taghi, Ngov Chheng, Lallemand Etienne, Zheng Yongxiang, Villette Claire, Zumsteg Julie, André François, Navrot Nicolas, Werck-Reichhart Danièle, Miesch Laurence
Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France.
Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
New Phytol. 2021 Mar;229(6):3253-3268. doi: 10.1111/nph.17126. Epub 2021 Jan 6.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
代谢增强是杂草抗除草剂进化的主要原因之一,这是可持续粮食生产面临的一项重大挑战。人们对这种进化的分子驱动因素了解甚少。我们在此测试了一种假说,即对于天然底物具有高度固有混杂性的植物酶可能为抗除草剂的出现提供合适的环境。我们测试了一系列在酵母中表达的植物细胞色素P450酶,这些酶在代谢天然底物时具有从窄到宽的混杂性记录,以检测其除草剂代谢能力。对阳性候选酶进行了在拟南芥中赋予除草剂耐受性的能力测定。我们的数据表明,拟南芥CYP706A3对单萜和倍半萜具有最混杂的花防御活性,它也能氧化植物微管组装抑制剂二硝基苯胺。CYP706A3的异位过表达赋予了对二硝基苯胺的抗性。此外,我们还表明,来自桉树和雪松等不同植物的CYP706家族的其他成员也具有代谢二硝基苯胺的能力。在CYP706A3的三维(3D)建模的支持下,结合天然底物和外源底物的共同物理化学性质,讨论了酶活性位点和底物通道的特性,以解释除草剂代谢。