Groß Felix, Zelent Mateusz, Träger Nick, Förster Johannes, Sanli Umut T, Sauter Robert, Decker Martin, Back Christian H, Weigand Markus, Keskinbora Kahraman, Schütz Gisela, Krawczyk Maciej, Gräfe Joachim
Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614 Poznań, Poland.
ACS Nano. 2020 Dec 22;14(12):17184-17193. doi: 10.1021/acsnano.0c07076. Epub 2020 Nov 30.
Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.
磁振子已被证明是基于波的低功耗计算的一个有前途的候选者。不仅能够在幅度上而且能够在相位上对信息进行编码,这使得数据传输速率得以提高。然而,要为功能性器件有效地激发纳米级自旋波需要复杂的光刻技术,因此仍然是一个挑战。在这里,我们报告一种测量给定频率和场下全自旋波等频率轮廓的方法。连续薄膜内的单个反点在单一激发几何结构内沿所有方向激发波矢。改变结构参数或引入Dzyaloshinskii-Moriya相互作用可以对等频率轮廓进行操纵和控制,这对于未来磁振子器件的制造是很有必要的。此外,相同的反点结构被用作多功能自旋波器件。根据其相对于微带天线的位置,它既可以是短自旋波的发射器,也可以是入射平面波的定向转换器。通过模拟我们表明,这样的转换器结构能够产生相干自旋波束。通过将短波长自旋波束引入现有的磁振子门逻辑中,可以设想将器件尺寸减小到微米尺度。这种方法无需精细的样品制备技术就能让广泛的磁振子器件获得短波长自旋波。所展示的用于自旋波操纵、发射和转换的工具箱是自旋波光学和门逻辑的关键一步。