Qin Huajun, Holländer Rasmus B, Flajšman Lukáš, Hermann Felix, Dreyer Rouven, Woltersdorf Georg, van Dijken Sebastiaan
NanoSpin, Department of Applied Physics, Aalto University School of Science, Aalto, Finland.
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Nat Commun. 2021 Apr 16;12(1):2293. doi: 10.1038/s41467-021-22520-6.
Active control of propagating spin waves on the nanoscale is essential for beyond-CMOS magnonic computing. Here, we experimentally demonstrate reconfigurable spin-wave transport in a hybrid YIG-based material structure that operates as a Fabry-Pérot nanoresonator. The magnonic resonator is formed by a local frequency downshift of the spin-wave dispersion relation in a continuous YIG film caused by dynamic dipolar coupling to a ferromagnetic metal nanostripe. Drastic downscaling of the spin-wave wavelength within the bilayer region enables programmable control of propagating spin waves on a length scale that is only a fraction of their wavelength. Depending on the stripe width, the device structure offers full nonreciprocity, tunable spin-wave filtering, and nearly zero transmission loss at allowed frequencies. Our results provide a practical route for the implementation of low-loss YIG-based magnonic devices with controllable transport properties.
对纳米尺度上传播的自旋波进行主动控制对于超越互补金属氧化物半导体(CMOS)的磁振子计算至关重要。在此,我们通过实验证明了在一种基于钇铁石榴石(YIG)的混合材料结构中的可重构自旋波传输,该结构作为一个法布里 - 珀罗纳米谐振器运行。磁振子谐振器是由连续YIG薄膜中自旋波色散关系的局部频率下移形成的,这是由与铁磁金属纳米条带的动态偶极耦合引起的。双层区域内自旋波波长的大幅缩小使得能够在仅为其波长一小部分的长度尺度上对传播的自旋波进行可编程控制。根据条带宽度,该器件结构具有完全非互易性、可调谐的自旋波滤波以及在允许频率下几乎为零的传输损耗。我们的结果为实现具有可控传输特性的基于YIG的低损耗磁振子器件提供了一条切实可行的途径。