Colombo J, Parkins C W
Division of Otolaryngology, University of Rochester School of Medicine and Dentistry, New York.
Hear Res. 1987 Dec 31;31(3):287-311. doi: 10.1016/0378-5955(87)90197-3.
A model of the mammalian auditory-nerve neuron has been developed based on the classical work of Frankenhauser and Huxley [(1964) J. Physiol. 171, 302-315], modified by McNeal [(1976) IEEE Trans. Biomed. Eng. BME-23, 329-336], and Reilly et al. [(1985) IEEE Trans. Biomed. Eng. BME-32, 1001-1011], and fine tuned to represent physiological data obtained from single auditory-nerve fiber experiments in squirrel monkeys. The model is capable of reproducing neural action potential waveforms due to electrical stimulation, and can reliably predict action potential thresholds and strength-duration curves. This paper explains the derivation of the mathematical model and the effects of varying certain independent parameters including fiber diameter, length of the nodes of Ranvier, internodal length, and myelin thickness. The model parameters were selected according to the anatomical findings of Liberman and Oliver [(1984) J. Comp. Neurol. 223, 163-176], and Liberman (Pers. Commun.). The length of the unmyelinated termination of the auditory-nerve that survives after aminoglycoside damage to the inner ear has not been experimentally determined. Therefore, it was investigated as an independent variable in the model. An unmyelinated terminal length of 10.0 micron was found to most accurately describe the experimental neural strength-duration curves obtained from aminoglycoside-deafened squirrel monkeys. The parameter that had the next most significant effect on the model was fiber diameter which affects all conduction pathways, across the membrane and through the fiber. Finally the results of the model are compared with behavioral data obtained from patients and monkeys implanted with cochlear prostheses. In the companion paper [(1987) Hear. Res. 31, 267-286] predictions of the model are quantitatively compared with single-neuron data from squirrel monkeys.
基于弗兰肯豪泽和赫胥黎的经典研究成果[(1964年)《生理学杂志》第171卷,第302 - 315页],经麦克尼尔[(1976年)《电气与电子工程师协会生物医学工程汇刊》BME - 23卷,第329 - 336页]以及赖利等人[(1985年)《电气与电子工程师协会生物医学工程汇刊》BME - 32卷,第1001 - 1011页]修改,并进行了微调以体现从松鼠猴单根听神经纤维实验中获取的生理数据,从而开发出一种哺乳动物听神经神经元模型。该模型能够再现电刺激引发的神经动作电位波形,并且能够可靠地预测动作电位阈值和强度 - 持续时间曲线。本文解释了数学模型的推导过程以及改变某些独立参数(包括纤维直径、郎飞结长度、结间长度和髓鞘厚度)所产生的影响。模型参数是根据利伯曼和奥利弗的解剖学研究结果[(1984年)《比较神经学杂志》第223卷,第163 - 176页]以及利伯曼(个人交流)选定的。氨基糖苷类药物对内耳造成损伤后存活下来的听神经无髓鞘终末的长度尚未通过实验确定。因此,在模型中将其作为一个自变量进行研究。发现10.0微米的无髓鞘终末长度能够最准确地描述从氨基糖苷类致聋的松鼠猴身上获得的实验性神经强度 - 持续时间曲线。对模型影响次之的参数是纤维直径,它会影响所有的传导途径,包括跨膜传导和纤维内传导。最后,将模型的结果与从植入人工耳蜗的患者和猴子身上获得的行为数据进行比较。在配套论文[(1987年)《听觉研究》第31卷,第267 - 286页]中,将模型的预测结果与来自松鼠猴的单神经元数据进行了定量比较。