National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
BMC Biol. 2020 Nov 30;18(1):186. doi: 10.1186/s12915-020-00919-9.
A crucial factor in mitigating respiratory viral outbreaks is early determination of the duration of the incubation period and, accordingly, the required quarantine time for potentially exposed individuals. At the time of the COVID-19 pandemic, optimization of quarantine regimes becomes paramount for public health, societal well-being, and global economy. However, biological factors that determine the duration of the virus incubation period remain poorly understood.
We demonstrate a strong positive correlation between the length of the incubation period and disease severity for a wide range of human pathogenic viruses. Using a machine learning approach, we develop a predictive model that accurately estimates, solely from several virus genome features, in particular, the number of protein-coding genes and the GC content, the incubation time ranges for diverse human pathogenic RNA viruses including SARS-CoV-2. The predictive approach described here can directly help in establishing the appropriate quarantine durations and thus facilitate controlling future outbreaks.
The length of the incubation period in viral diseases strongly correlates with disease severity, emphasizing the biological and epidemiological importance of the incubation period. Perhaps, surprisingly, incubation times of pathogenic RNA viruses can be accurately predicted solely from generic features of virus genomes. Elucidation of the biological underpinnings of the connections between these features and disease progression can be expected to reveal key aspects of virus pathogenesis.
减轻呼吸道病毒爆发的一个关键因素是早期确定潜伏期的持续时间,相应地,为潜在暴露的个体确定所需的隔离时间。在 COVID-19 大流行期间,优化隔离制度对公共卫生、社会福利和全球经济至关重要。然而,决定病毒潜伏期持续时间的生物学因素仍知之甚少。
我们证明了潜伏期的长度与广泛的人类致病病毒的疾病严重程度之间存在很强的正相关关系。我们使用机器学习方法,仅从几个病毒基因组特征(特别是编码蛋白的基因数量和 GC 含量)开发了一个预测模型,准确估计了包括 SARS-CoV-2 在内的多种人类致病 RNA 病毒的潜伏期范围。这里描述的预测方法可以直接帮助确定适当的隔离时间,从而有助于控制未来的爆发。
病毒病的潜伏期与疾病严重程度强烈相关,强调了潜伏期在生物学和流行病学上的重要性。也许令人惊讶的是,致病 RNA 病毒的潜伏期仅可以从病毒基因组的通用特征准确预测。阐明这些特征与疾病进展之间的联系的生物学基础,可以揭示病毒发病机制的关键方面。