Suppr超能文献

培养条件调控对微生物来源萜类化合物高产、高特异性及成本效益生产的影响:综述

Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review.

作者信息

Shukla Vibha, Phulara Suresh Chandra

机构信息

Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

出版信息

Appl Environ Microbiol. 2021 Mar 1;87(4). doi: 10.1128/AEM.02369-20. Epub 2020 Nov 30.

Abstract

Recent years have seen a remarkable increase in the non-natural production of terpenoids from microbial route. This is due to the advancements in synthetic biology tools and techniques, which have overcome the challenges associated with the non-native production of terpenoids from microbial hosts. Although, microbes in their native form have ability to grow in wide range of physicochemical parameters such as, pH, temperature, agitation, aeration etc; however, after genetic modifications, culture conditions need to be optimized in order to achieve improved titers of desired terpenoids from engineered microbes. The physicochemical parameters together with medium supplements, such as, inducer, carbon and nitrogen source, and cofactor supply not only play an important role in high-yield production of target terpenoids from engineered host, but also reduce the accumulation of undesired metabolites in fermentation medium, thus facilitate product recovery. Further, for the economic production of terpenoids, the biomass derived sugars can be utilized together with the optimized culture conditions. In the present mini-review, we have highlighted the impact of culture conditions modulation on the high-yield and high-specificity production of terpenoids from engineered microbes. Lastly, utilization of economic feedstock has also been discussed for the cost-effective and sustainable production of terpenoids.

摘要

近年来,通过微生物途径非天然生产萜类化合物的情况显著增加。这归因于合成生物学工具和技术的进步,这些进步克服了微生物宿主非天然生产萜类化合物所面临的挑战。尽管微生物以其天然形式有能力在广泛的物理化学参数(如pH值、温度、搅拌、通气等)下生长;然而,经过基因改造后,需要优化培养条件,以便从工程微生物中获得更高产量的所需萜类化合物。物理化学参数以及培养基补充物,如诱导剂、碳源和氮源以及辅因子供应,不仅在从工程宿主高产生产目标萜类化合物中起重要作用,而且还减少了发酵培养基中不需要的代谢物的积累,从而便于产物回收。此外,为了经济地生产萜类化合物,可以将生物质衍生的糖与优化的培养条件一起使用。在本综述中,我们强调了培养条件调节对工程微生物高产和高特异性生产萜类化合物的影响。最后,还讨论了使用经济原料以实现萜类化合物的经济高效和可持续生产。

相似文献

2
Production of Terpenoids by Synthetic Biology Approaches.
Front Bioeng Biotechnol. 2020 Apr 24;8:347. doi: 10.3389/fbioe.2020.00347. eCollection 2020.
3
Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast.
Pharmaceuticals (Basel). 2021 Mar 26;14(4):295. doi: 10.3390/ph14040295.
4
Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms.
Mol Pharm. 2008 Mar-Apr;5(2):167-90. doi: 10.1021/mp700151b. Epub 2008 Mar 21.
5
Strategies for enhancing terpenoids accumulation in microalgae.
Appl Microbiol Biotechnol. 2021 Jun;105(12):4919-4930. doi: 10.1007/s00253-021-11368-x. Epub 2021 Jun 14.
6
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
7
Microbial production strategies and applications of lycopene and other terpenoids.
World J Microbiol Biotechnol. 2016 Jan;32(1):15. doi: 10.1007/s11274-015-1975-2. Epub 2015 Dec 29.
8
Engineering cyanobacteria for production of terpenoids.
Planta. 2019 Jan;249(1):145-154. doi: 10.1007/s00425-018-3047-y. Epub 2018 Nov 21.
10
Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.
J Agric Food Chem. 2018 Mar 14;66(10):2247-2258. doi: 10.1021/acs.jafc.7b00473. Epub 2017 Apr 18.

引用本文的文献

1
Microbial proteases as emerging anti-inflammatory therapeutics: a comprehensive review.
Arch Microbiol. 2025 Aug 19;207(9):229. doi: 10.1007/s00203-025-04409-w.
2
Biotechnologies in Perfume Manufacturing: Metabolic Engineering of Terpenoid Biosynthesis.
Int J Mol Sci. 2023 Apr 26;24(9):7874. doi: 10.3390/ijms24097874.
4
Alternative metabolic pathways and strategies to high-titre terpenoid production in .
Nat Prod Rep. 2022 Jan 26;39(1):90-118. doi: 10.1039/d1np00025j.

本文引用的文献

1
Protein engineering strategies for microbial production of isoprenoids.
Metab Eng Commun. 2020 May 16;11:e00129. doi: 10.1016/j.mec.2020.e00129. eCollection 2020 Dec.
2
Production of Squalene in by Squalene Synthase Screening and Metabolic Engineering.
J Agric Food Chem. 2020 Apr 15;68(15):4447-4455. doi: 10.1021/acs.jafc.0c00375. Epub 2020 Apr 3.
5
Structural Changes of Biomass on Biosorption of Iron (II) from Aqueous Solutions: Isotherm and Kinetic Studies.
Pol J Microbiol. 2019 Dec;68(4):549-558. doi: 10.33073/pjm-2019-057. Epub 2019 Dec 5.
6
Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review.
Bioresour Technol. 2020 Feb;298:122476. doi: 10.1016/j.biortech.2019.122476. Epub 2019 Nov 22.
8
Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
J Biosci Bioeng. 2019 Apr;127(4):458-464. doi: 10.1016/j.jbiosc.2018.10.002. Epub 2018 Oct 26.
9
Engineering to produce the biogasoline isopentenol from plant biomass hydrolysates.
Biotechnol Biofuels. 2019 Feb 27;12:41. doi: 10.1186/s13068-019-1381-3. eCollection 2019.
10
Metabolic Engineering of Toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production.
Front Microbiol. 2019 Feb 20;10:218. doi: 10.3389/fmicb.2019.00218. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验