Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130.
Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31685-31689. doi: 10.1073/pnas.2008613117. Epub 2020 Nov 30.
NASA's current mandate is to land humans on Mars by 2033. Here, we demonstrate an approach to produce ultrapure H and O from liquid-phase Martian regolithic brine at ∼-36 °C. Utilizing a PbRuO pyrochlore O-evolution electrocatalyst and a Pt/C H-evolution electrocatalyst, we demonstrate a brine electrolyzer with >25× the O production rate of the Mars Oxygen In Situ Resource Utilization Experiment (MOXIE) from NASA's Mars 2020 mission for the same input power under Martian terrestrial conditions. Given the Phoenix lander's observation of an active water cycle on Mars and the extensive presence of perchlorate salts that depress water's freezing point to ∼-60 °C, our approach provides a unique pathway to life-support and fuel production for future human missions to Mars.
美国国家航空航天局(NASA)的当前任务是在 2033 年之前将人类送上火星。在这里,我们展示了一种从液态火星风化层卤水中在约-36°C 下生产超纯 H 和 O 的方法。利用 PbRuO 钙钛矿 O 释放电催化剂和 Pt/C H 释放电催化剂,我们展示了一种盐水电解槽,在火星地球条件下,相同输入功率下的 O 产量比 NASA 的火星 2020 任务中的火星氧气就地资源利用实验(MOXIE)高出 25 倍。鉴于凤凰号着陆器在火星上观察到的活跃水循环以及广泛存在的可将水的冰点降低到约-60°C 的高氯酸盐盐,我们的方法为未来人类火星任务的生命支持和燃料生产提供了一条独特的途径。