文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 UNCALLED 对原始电信号进行实时映射的靶向纳米孔测序。

Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED.

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Nat Biotechnol. 2021 Apr;39(4):431-441. doi: 10.1038/s41587-020-0731-9. Epub 2020 Nov 30.


DOI:10.1038/s41587-020-0731-9
PMID:33257863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8567335/
Abstract

Conventional targeted sequencing methods eliminate many of the benefits of nanopore sequencing, such as the ability to accurately detect structural variants or epigenetic modifications. The ReadUntil method allows nanopore devices to selectively eject reads from pores in real time, which could enable purely computational targeted sequencing. However, this requires rapid identification of on-target reads while most mapping methods require computationally intensive basecalling. We present UNCALLED ( https://github.com/skovaka/UNCALLED ), an open source mapper that rapidly matches streaming of nanopore current signals to a reference sequence. UNCALLED probabilistically considers k-mers that could be represented by the signal and then prunes the candidates based on the reference encoded within a Ferragina-Manzini index. We used UNCALLED to deplete sequencing of known bacterial genomes within a metagenomics community, enriching the remaining species 4.46-fold. UNCALLED also enriched 148 human genes associated with hereditary cancers to 29.6× coverage using one MinION flowcell, enabling accurate detection of single-nucleotide polymorphisms, insertions and deletions, structural variants and methylation in these genes.

摘要

传统的靶向测序方法消除了纳米孔测序的许多优势,例如准确检测结构变体或表观遗传修饰的能力。ReadUntil 方法允许纳米孔设备实时选择性地从孔中排出读取内容,这可以实现纯计算靶向测序。然而,这需要在大多数映射方法需要计算密集型碱基调用的情况下,快速识别目标读取内容。我们提出了 UNCALLED(https://github.com/skovaka/UNCALLED),这是一种开源映射器,可以快速将纳米孔电流信号的流与参考序列匹配。UNCALLED 概率地考虑可能由信号表示的 k-mer,然后根据 Ferragina-Manzini 索引中编码的参考信息修剪候选内容。我们使用 UNCALLED 在宏基因组群落中耗尽了已知细菌基因组的测序,使剩余的物种富集了 4.46 倍。UNCALLED 还使用一个 MinION 流池将与遗传性癌症相关的 148 个人类基因富集到 29.6×的覆盖度,从而能够准确检测这些基因中的单核苷酸多态性、插入和缺失、结构变体和甲基化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/a8158514004c/nihms-1636148-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/89138eca146e/nihms-1636148-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/ba0233494744/nihms-1636148-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/38e4d2df7832/nihms-1636148-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/80b139844710/nihms-1636148-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/9dc99f65d5fa/nihms-1636148-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/2d1d8682f35f/nihms-1636148-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/e5bc1b7f8a82/nihms-1636148-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/cbec7746ede8/nihms-1636148-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/9b9719dca741/nihms-1636148-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/8dd6393bf8e2/nihms-1636148-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/54bdec0c640a/nihms-1636148-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/3d72ff40d70b/nihms-1636148-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/0b1e4c8c1702/nihms-1636148-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/a8158514004c/nihms-1636148-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/89138eca146e/nihms-1636148-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/ba0233494744/nihms-1636148-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/38e4d2df7832/nihms-1636148-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/80b139844710/nihms-1636148-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/9dc99f65d5fa/nihms-1636148-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/2d1d8682f35f/nihms-1636148-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/e5bc1b7f8a82/nihms-1636148-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/cbec7746ede8/nihms-1636148-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/9b9719dca741/nihms-1636148-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/8dd6393bf8e2/nihms-1636148-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/54bdec0c640a/nihms-1636148-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/3d72ff40d70b/nihms-1636148-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/0b1e4c8c1702/nihms-1636148-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2b/8567335/a8158514004c/nihms-1636148-f0005.jpg

相似文献

[1]
Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED.

Nat Biotechnol. 2021-4

[2]
Real-time mapping of nanopore raw signals.

Bioinformatics. 2021-7-12

[3]
SimReadUntil for benchmarking selective sequencing algorithms on ONT devices.

Bioinformatics. 2024-5-2

[4]
Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing.

Microbiol Spectr. 2024-6-4

[5]
RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes.

Bioinformatics. 2023-6-30

[6]
Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing.

Sci Rep. 2019-9-18

[7]
Freshwater monitoring by nanopore sequencing.

Elife. 2021-1-19

[8]
Fast and sensitive mapping of nanopore sequencing reads with GraphMap.

Nat Commun. 2016-4-15

[9]
Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase.

Genome Biol. 2021-2-22

[10]
ReadCurrent: a VDCNN-based tool for fast and accurate nanopore selective sequencing.

Brief Bioinform. 2024-7-25

引用本文的文献

[1]
Beyond the Cut: Long-read sequencing reveals complex genomic and transcriptomic changes in AAV-CRISPR therapy for Duchenne Muscular Dystrophy.

bioRxiv. 2025-8-1

[2]
Cost-effective promoter methylation analysis via target long-read bisulfite sequencing: a case study in severe preterm birth.

BMC Med Genomics. 2025-7-29

[3]
Advances in Wastewater-Based Epidemiology for Pandemic Surveillance: Methodological Frameworks and Future Perspectives.

Microorganisms. 2025-5-21

[4]
Impact of microbiological molecular methodologies on adaptive sampling using nanopore sequencing in metagenomic studies.

Environ Microbiome. 2025-5-5

[5]
Demultiplexing and barcode-specific adaptive sampling for nanopore direct RNA sequencing.

Nat Commun. 2025-4-21

[6]
Realfreq: real-time base modification analysis for nanopore sequencing.

Bioinformatics. 2025-3-29

[7]
Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment.

Nat Methods. 2025-4

[8]
A review of neural networks for metagenomic binning.

Brief Bioinform. 2025-3-4

[9]
Unraveling the hidden complexity of cancer through long-read sequencing.

Genome Res. 2025-4-14

[10]
The promising role of nanopore sequencing in cancer diagnostics and treatment.

Cell Insight. 2025-1-18

本文引用的文献

[1]
Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing.

Genome Res. 2020-9

[2]
Telomere-to-telomere assembly of a complete human X chromosome.

Nature. 2020-7-14

[3]
NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION.

Genome Biol. 2019-11-14

[4]
Ensembl 2020.

Nucleic Acids Res. 2020-1-8

[5]
Rapid and Cost-Efficient Enterovirus Genotyping from Clinical Samples Using Flongle Flow Cells.

Genes (Basel). 2019-8-29

[6]
Real-Time Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed Criteria.

Sci Rep. 2019-8-7

[7]
An open resource for accurately benchmarking small variant and reference calls.

Nat Biotechnol. 2019-4-1

[8]
Best practices for benchmarking germline small-variant calls in human genomes.

Nat Biotechnol. 2019-3-11

[9]
A multi-task convolutional deep neural network for variant calling in single molecule sequencing.

Nat Commun. 2019-3-1

[10]
BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.

Bioinformatics. 2019-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索