Zhu Weihe, Wang Daxi, Li Pengsong, Deng Haohao, Deng Ziqing
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
Microorganisms. 2025 May 21;13(5):1169. doi: 10.3390/microorganisms13051169.
Wastewater-based epidemiology (WBE) has emerged as a transformative approach for community-level health monitoring, particularly during the COVID-19 pandemic. This review critically examines the methodological framework of WBE systems through the following three core components: (1) sampling strategies that address spatial-temporal variability in wastewater systems, (2) comparative performance of different platforms in pathogen detection, and (3) predictive modeling integrating machine learning approaches. We systematically analyze how these components collectively overcome the limitations of conventional surveillance methods through early outbreak detection, asymptomatic case identification, and population-level trend monitoring. While highlighting technical breakthroughs in viral concentration methods and variant tracking through sequencing, the review also identifies persistent challenges, including data standardization, cost-effectiveness concerns in resource-limited settings, and ethical considerations in public health surveillance. Drawing insights from global implementation cases, we propose recommendations for optimizing each operational phase and discuss emerging applications beyond pandemic response. This review highlights WBE as an indispensable tool for modern public health, whose methodological refinements and cross-disciplinary integration are critical for transforming pandemic surveillance from reactive containment to proactive population health management.
基于废水的流行病学(WBE)已成为一种用于社区层面健康监测的变革性方法,尤其是在新冠疫情期间。本综述通过以下三个核心组成部分对WBE系统的方法框架进行了批判性审视:(1)应对废水系统时空变异性的采样策略,(2)不同平台在病原体检测方面的比较性能,以及(3)整合机器学习方法的预测建模。我们系统地分析了这些组成部分如何通过早期疫情检测、无症状病例识别和人群层面趋势监测共同克服传统监测方法的局限性。在强调病毒浓缩方法和通过测序进行变异株追踪方面的技术突破时,本综述还指出了持续存在的挑战,包括数据标准化、资源有限环境中的成本效益问题以及公共卫生监测中的伦理考量。从全球实施案例中汲取见解,我们提出了优化每个操作阶段的建议,并讨论了疫情应对之外的新兴应用。本综述强调WBE是现代公共卫生不可或缺的工具,其方法的完善和跨学科整合对于将疫情监测从被动控制转变为主动的人群健康管理至关重要。
Food Environ Virol. 2024-11-30
Indian J Med Res. 2024-12
Heliyon. 2024-6-29
Sci Total Environ. 2025-3-10
Microorganisms. 2025-8-15
Environ Health (Wash). 2023-10-19
Environ Sci Technol Lett. 2020
Sci Total Environ. 2024-10-1