Suppr超能文献

FeSe@C微棒作为钠离子电池的一种优异的长寿命和高倍率阳极材料。

FeSe@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries.

作者信息

Pan Qichang, Zhang Man, Zhang Lixuan, Li Yahao, Li Yu, Tan Chunlei, Zheng Fenghua, Huang Youguo, Wang Hongqiang, Li Qingyu

机构信息

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China.

Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China.

出版信息

ACS Nano. 2020 Dec 22;14(12):17683-17692. doi: 10.1021/acsnano.0c08818. Epub 2020 Dec 1.

Abstract

Transition-metal selenides have emerged as promising anode materials for sodium ion batteries (SIBs). Nevertheless, they suffer from volume expansion, polyselenide dissolution, and sluggish kinetics, which lead to inadequate conversion reaction toward sodium and poor reversibility during the desodiation process. Therefore, the transition-metal selenides are far from long cycling stability, outstanding rate performance, and high initial Coulombic efficiency, which are the major challenges for practical application in SIBs. Here, an efficient anode material including an FeSe core and N-doped carbon shell with inner void space as well as high conductivity is developed for outstanding rate performance and long cycle life SIBs. In the ingeniously designed FeSe@NC microrods, the N-doped carbon shell can facilitate mass transport/electron transfer, protect the FeSe core from the electrolyte, and accommodate volume variation of FeSe with the help of the inner void of the core. Thus, the FeSe@NC microrods can maintain strong structural integrity upon long cycling and ensure a good reversible conversion reaction of FeSe during the discharge/charge process. As a result, the as-prepared FeSe@NC microrods exhibit excellent sodium storage performance and ultrahigh stability, achieving an excellent rate capability (411 mAh g at 10.0 A g) and a long-term cycle performance (401.3 mAh g after 2000 cycles at 5.0 A g).

摘要

过渡金属硒化物已成为钠离子电池(SIBs)中很有前景的负极材料。然而,它们存在体积膨胀、多硒化物溶解和动力学迟缓等问题,这导致在脱钠过程中对钠的转化反应不充分且可逆性差。因此,过渡金属硒化物远未达到长循环稳定性、出色的倍率性能和高初始库仑效率,而这些是SIBs实际应用中的主要挑战。在此,开发了一种高效的负极材料,它由FeSe核、具有内部空隙空间且具有高导电性的N掺杂碳壳组成,用于实现出色的倍率性能和长循环寿命的SIBs。在巧妙设计的FeSe@NC微棒中,N掺杂碳壳可促进质量传输/电子转移,保护FeSe核免受电解液侵蚀,并借助核内空隙来适应FeSe的体积变化。因此,FeSe@NC微棒在长循环过程中可保持强大的结构完整性,并确保FeSe在充放电过程中具有良好的可逆转化反应。结果,所制备的FeSe@NC微棒表现出优异的储钠性能和超高稳定性,实现了出色的倍率能力(在10.0 A g下为411 mAh g)和长期循环性能(在5.0 A g下循环2000次后为401.3 mAh g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验