Chen Chen, Hu Qilin, Xue Hongyu, Li Han, Li Wenkai, Cao Shuai, Peng Tao, Yang Ya, Luo Yongsong
Key Laboratory of Microelectronics and Energy of Henan Province, Henan Joint International Research Laboratory of New Energy Storage Technology, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China.
School of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China.
Nanotechnology. 2023 Nov 17;35(5). doi: 10.1088/1361-6528/ad06d7.
Transition metal selenides are considered as promising anode materials for fast-charging sodium-ion batteries due to their high theoretical specific capacity. However, the low intrinsic conductivity, particle aggregation, and large volume expansion problems can severely inhibit the high-rate and long-cycle performance of the electrode. Herein, FeSenanoparticles embedded in nitrogen-doped carbon nanofibers (FeSe@NCF) have been synthesized using the electrospinning and selenization process, which can alleviate the volume expansion and particle aggregation during the sodiation/desodiation and improve the electrical conductivity of the electrode. The FeSe@NCF electrode delivers the outstanding specific capacity of 222.3 mAh gat a fast current density of 50 A gand 262.1 mAh gat 10 A gwith the 87.8% capacity retention after 5000 cycles. Furthermore, the Na-ion full cells assembled with pre-sodiated FeSe@NCF as anode and NaV(PO)/C as cathode exhibit the reversible specific capacity of 117.6 mAh gat 5 A gwith the 84.3% capacity retention after 1000 cycles. This work provides a promising way for the conversion-based metal selenides for the applications as fast-charging sodium-ion battery anode.
过渡金属硒化物因其高理论比容量而被认为是快速充电钠离子电池很有前景的负极材料。然而,低本征电导率、颗粒团聚和大体积膨胀问题会严重抑制电极的高倍率和长循环性能。在此,通过静电纺丝和硒化工艺合成了嵌入氮掺杂碳纳米纤维中的FeSe纳米颗粒(FeSe@NCF),这可以缓解在 sodiation/desodiation 过程中的体积膨胀和颗粒团聚,并提高电极的电导率。FeSe@NCF电极在50 A g的快速电流密度下具有222.3 mAh g的出色比容量,在10 A g下具有262.1 mAh g,在5000次循环后容量保持率为87.8%。此外,以预钠化的FeSe@NCF为负极、NaV(PO)/C为正极组装的钠离子全电池在5 A g下表现出117.6 mAh g的可逆比容量,在1000次循环后容量保持率为84.3%。这项工作为基于转化的金属硒化物作为快速充电钠离子电池负极的应用提供了一条很有前景的途径。