Suppr超能文献

通过原子界面工程优化FeS负极的可逆相变以实现快速充电钠存储:理论预测与实验验证

Optimizing Reversible Phase-Transformation of FeS Anode via Atomic-Interface Engineering Toward Fast-Charging Sodium Storage: Theoretical Predication and Experimental Validation.

作者信息

Zhao Wenxi, Zhou Yanbing, Zhou Hao, Wang Xinqin, Sun Shengjun, He Xun, Luo Yongsong, Ying Binwu, Yao Yongchao, Ma Xiaoqing, Sun Xuping

机构信息

School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

出版信息

Adv Sci (Weinh). 2025 Jan;12(2):e2411884. doi: 10.1002/advs.202411884. Epub 2024 Nov 18.

Abstract

Sodium-storage performance of pyrite FeS is greatly improved by constructing various FeS-based nanostructures to optimize its ion-transport kinetics and structural stability. However, less attention has been paid to rapid capacity degradation and electrode failure caused by the irreversible phase-transition of intermediate NaFeS to FeS and polysulfides dissolution upon cycling. Under the guidance of theoretical calculations, coupling FeS nanoparticles with honeycomb-like nitrogen-doped carbon (NC) nanosheet supported single-atom manganese (SAs Mn) catalyst (FeS/SAs Mn@NC) via atomic-interface engineering is proposed to address above challenge. Systematic electrochemical analyses and theoretical results unveil that the functional integration of such two type components can significantly enhance ionic conductivity, accelerate charge transfer efficiency, and improve Na-adsorption capability. Particularly, SAs Mn@NC with Mn-N coordination center can reduce the decomposition barrier of NaS and NaFeS to further accelerate reversible phase transformation of Fe/NaS→NaFeS→FeS and polysulfides decomposition. As predicted, such FeS/SAs Mn@NC showcases outstanding rate capability and fascinating cyclic durability. A sequence of kinetic studies and ex situ characterizations provide the comprehensive understanding for ion-transport kinetics and phase-transformation process. Its practical use is further demonstrated in sodium-ion full cell and capacitor with impressive electrochemical capability and excellent energy-density output.

摘要

通过构建各种基于FeS的纳米结构来优化其离子传输动力学和结构稳定性,黄铁矿FeS的储钠性能得到了极大改善。然而,较少有人关注循环过程中中间产物NaFeS不可逆相转变为FeS以及多硫化物溶解所导致的快速容量衰减和电极失效问题。在理论计算的指导下,提出通过原子界面工程将FeS纳米颗粒与蜂窝状氮掺杂碳(NC)纳米片负载的单原子锰(SAs Mn)催化剂(FeS/SAs Mn@NC)耦合,以应对上述挑战。系统的电化学分析和理论结果表明,这两种类型组分的功能整合能够显著提高离子电导率、加速电荷转移效率并改善钠吸附能力。特别地,具有Mn-N配位中心的SAs Mn@NC可以降低NaS和NaFeS的分解势垒,从而进一步加速Fe/NaS→NaFeS→FeS的可逆相变和多硫化物分解。正如所预测的那样,这种FeS/SAs Mn@NC展现出出色的倍率性能和迷人的循环耐久性。一系列动力学研究和非原位表征为离子传输动力学和相变过程提供了全面的理解。其实际应用在钠离子全电池和电容器中得到了进一步证明,具有令人印象深刻的电化学性能和出色的能量密度输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7943/11727254/33881c892337/ADVS-12-2411884-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验