Wang Chuhong, Aoyagi Koutarou, Aykol Muratahan, Mueller Tim
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Toyota Motor Corporation, Toyota, Aichi 471-8572, Japan.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55510-55519. doi: 10.1021/acsami.0c17285. Epub 2020 Dec 1.
All-solid-state lithium-ion batteries have attracted significant research interest for providing high power and energy densities with enhanced operational safety. Despite the discoveries of solid electrolyte materials with superionic conductivities, it remains a challenge to maintain high rate capability in all-solid lithium-ion batteries in long-term operation. The observed rate degradation has been attributed to reactivity and resistance at the electrode-electrolyte interfaces. We examine interfaces formed between eight electrolytes including garnet, LiPON, and LiGePS (LGPS) and seven electrode materials including an NCM cathode and a metallic Li anode and identify the most rapid lithium-ion diffusion pathways through metastable arrangements of product phases that may precipitate out at each interface. Our analysis accounts for possible density functional theory (DFT) error, metastability, and finite-temperature effects by statistically sampling thousands of possible phase diagrams for each interface. The lithium-ion conductivities in the product phases at the interface are evaluated using machine-learned interatomic potentials trained on the fly. In nearly all electrode-electrolyte interfaces we evaluate, we predict that lithium-ion conduction in the product phases making up the interphase region becomes the rate-limiting step for battery performance.
全固态锂离子电池因其能提供高功率和能量密度并增强操作安全性而吸引了大量研究关注。尽管发现了具有超离子导电性的固体电解质材料,但在全固态锂离子电池的长期运行中保持高倍率性能仍是一项挑战。观察到的倍率性能下降归因于电极 - 电解质界面处的反应性和电阻。我们研究了包括石榴石、LiPON和LiGePS(LGPS)在内的八种电解质与包括NCM正极和金属锂负极在内的七种电极材料之间形成的界面,并通过可能在每个界面析出的产物相的亚稳排列确定了最快的锂离子扩散途径。我们的分析通过对每个界面的数千个可能相图进行统计采样,考虑了可能的密度泛函理论(DFT)误差、亚稳性和有限温度效应。使用即时训练的机器学习原子间势评估界面处产物相中的锂离子电导率。在我们评估的几乎所有电极 - 电解质界面中,我们预测构成界面区域的产物相中的锂离子传导成为电池性能的速率限制步骤。