Suppr超能文献

在晶体锂-硼-硫体系中结合超离子传导与有利的分解产物:稳定固态锂离子电解质的新机制

Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes.

作者信息

Sendek Austin D, Antoniuk Evan R, Cubuk Ekin D, Ransom Brandi, Francisco Brian E, Buettner-Garrett Josh, Cui Yi, Reed Evan J

机构信息

Department of Applied Physics, Stanford University, Stanford, California 94305, United States.

Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Aug 26;12(34):37957-37966. doi: 10.1021/acsami.9b19091. Epub 2020 Aug 17.

Abstract

We report a solid-state Li-ion electrolyte predicted to exhibit simultaneously fast ionic conductivity, wide electrochemical stability, low cost, and low mass density. We report exceptional density functional theory (DFT)-based room-temperature single-crystal ionic conductivity values for two phases within the crystalline lithium-boron-sulfur (Li-B-S) system: 62 (+9, -2) mS cm in LiBS and 80 (-56, -41) mS cm in LiBS. We report significant ionic conductivity values for two additional phases: between 0.0056 and 0.16 mS/cm in LiBS and between 0.0031 and 9.7 mS cm in LiBS depending on the room-temperature extrapolation scheme used. To our knowledge, our prediction gives LiBS and LiBS the second and third highest reported DFT-computed single-crystal ionic conductivities of any crystalline material. We compute the thermodynamic electrochemical stability window widths of these materials to be 0.50 V for LiBS, 0.16 V for LiBS, 0.45 V for LiBS, and 0.60 V for LiBS. Individually, these materials exhibit similar or better ionic conductivity and electrochemical stability than the best-known sulfide-based solid-state Li-ion electrolyte materials, including LiGePS (LGPS). However, we predict that electrolyte materials synthesized from a range of compositions in the Li-B-S system may exhibit even wider thermodynamic electrochemical stability windows of 0.63 V and possibly as high as 3 V or greater. The Li-B-S system also has a low elemental cost of approximately 0.05 USD/m per 10 μm thickness, which is significantly lower than that of germanium-containing LGPS, and a comparable mass density below 2 g/cm. These fast-conducting phases were initially brought to our attention by a machine learning-based approach to screen over 12,000 solid electrolyte candidates, and the evidence provided here represents an inspiring success for this model.

摘要

我们报道了一种预测可同时展现快速离子传导性、宽电化学稳定性、低成本和低质量密度的固态锂离子电解质。我们报道了基于密度泛函理论(DFT)的、在结晶态锂 - 硼 - 硫(Li - B - S)体系中两个相的室温单晶离子传导率值:LiBS中为62(+9, - 2)mS/cm,LiBS中为80( - 56, - 41)mS/cm。我们还报道了另外两个相的显著离子传导率值:LiBS中根据所使用的室温外推方案在0.0056至0.16 mS/cm之间,LiBS中在0.0031至9.7 mS/cm之间。据我们所知,我们的预测使LiBS和LiBS成为已报道的通过DFT计算的任何晶体材料中第二和第三高的单晶离子传导率。我们计算出这些材料的热力学电化学稳定性窗口宽度对于LiBS为0.50 V,LiBS为0.16 V,LiBS为0.45 V,LiBS为0.60 V。单独来看,这些材料展现出与包括LiGePS(LGPS)在内的最知名的硫化物基固态锂离子电解质材料相似或更好的离子传导性和电化学稳定性。然而,我们预测由Li - B - S体系中一系列组成合成的电解质材料可能展现出甚至更宽的热力学电化学稳定性窗口——0.63 V,甚至可能高达3 V或更高。Li - B - S体系还具有约0.05美元/米每10μm厚度的低元素成本,这显著低于含锗的LGPS,并且具有低于2 g/cm的可比质量密度。这些快速传导相最初是通过基于机器学习的方法筛选超过12,000种固体电解质候选物而引起我们注意的,并在此提供的证据代表了该模型令人鼓舞的成功。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验