Suppr超能文献

石榴石型快锂离子导体,具有用于全固态电池的高离子电导率。

Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.

机构信息

Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China.

Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia.

出版信息

ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12461-12468. doi: 10.1021/acsami.7b00614. Epub 2017 Mar 31.

Abstract

All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic LiGaLaZrO to enhance the Li-ion conductivity for the first time. The LiGaLaRbZrO electrolyte exhibits a Li-ion conductivity of 1.62 mS cm at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO active cathode. The addition of Li(CFSO)N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g and good cycling stability with 110 mAh g retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.

摘要

全固态锂离子电池采用金属锂负极和固体电解质,相比于传统锂离子电池具有更高的能量密度和安全性。然而,与有机液态电解质相比,固体电解质的低电导率和大的电解质/电极界面电阻阻碍了它们的实际应用。石榴石型锂离子导体氧化物是最有前途的全固态锂离子电池电解质之一。在这项工作中,首次在立方 LiGaLaZrO 中掺杂大半径的 Rb 来提高锂离子电导率。LiGaLaRbZrO 电解质在室温下的锂离子电导率为 1.62 mS cm,这是迄今为止报道的最高电导率。全固态锂离子电池由电解质、金属锂负极和 LiFePO 活性正极组成。在正极中添加 Li(CFSO)N 电解质盐可有效降低界面电阻,在 60°C 以 0.05 C 的充放电速率循环 20 次后,仍具有 152 mAh g 的高初始放电容量和良好的循环稳定性,保留了 110 mAh g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验