Suppr超能文献

肿瘤微环境作为癌症治疗靶点。

Tumor microenvironment as a therapeutic target in cancer.

机构信息

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Pharmacol Ther. 2021 May;221:107753. doi: 10.1016/j.pharmthera.2020.107753. Epub 2020 Nov 28.

Abstract

Tumor microenvironment denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. The constant interactions between tumor cells and the tumor microenvironment play decisive roles in tumor initiation, progression, metastasis, and response to therapies. The tumor microenvironment as a therapeutic target in cancer has attracted great research and clinical interest. Here we summarize the current progress in targeting the tumor microenvironment in both drug development and clinical trials; highlight challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new technologies and approaches to better decipher the tumor microenvironment; and discuss strategies to intervene in the pro-tumor microenvironment and maximize therapeutic benefits.

摘要

肿瘤微环境是指肿瘤中存在的非癌细胞和成分,包括它们产生和释放的分子。肿瘤细胞与肿瘤微环境之间的持续相互作用在肿瘤的发生、进展、转移和对治疗的反应中起着决定性的作用。肿瘤微环境作为癌症治疗的靶点,引起了广泛的研究和临床关注。在这里,我们总结了目前在药物开发和临床试验中靶向肿瘤微环境的进展;强调了靶向肿瘤微环境以实现治疗效果所面临的挑战;探讨了利用新技术和方法更好地解析肿瘤微环境的方法;并讨论了干预促肿瘤微环境和最大化治疗效益的策略。

相似文献

1
Tumor microenvironment as a therapeutic target in cancer.
Pharmacol Ther. 2021 May;221:107753. doi: 10.1016/j.pharmthera.2020.107753. Epub 2020 Nov 28.
2
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis.
Semin Cancer Biol. 2018 Dec;53:90-109. doi: 10.1016/j.semcancer.2018.06.006. Epub 2018 Jun 30.
4
Targeting the tumor microenvironment: from understanding pathways to effective clinical trials.
Cancer Res. 2013 Aug 15;73(16):4965-77. doi: 10.1158/0008-5472.CAN-13-0661. Epub 2013 Aug 2.
5
Stem cell programs in cancer initiation, progression, and therapy resistance.
Theranostics. 2020 Jul 9;10(19):8721-8743. doi: 10.7150/thno.41648. eCollection 2020.
6
Complex interplay between tumor microenvironment and cancer therapy.
Front Med. 2018 Aug;12(4):426-439. doi: 10.1007/s11684-018-0663-7. Epub 2018 Aug 10.
7
Using functional nanomaterials to target and regulate the tumor microenvironment: diagnostic and therapeutic applications.
Adv Mater. 2013 Jul 12;25(26):3508-25. doi: 10.1002/adma.201300299. Epub 2013 May 24.
8
Tumor microenvironment and therapeutic response.
Cancer Lett. 2017 Feb 28;387:61-68. doi: 10.1016/j.canlet.2016.01.043. Epub 2016 Feb 1.

引用本文的文献

1
Phage therapy and its role in cancer treatment and control.
Folia Microbiol (Praha). 2025 Sep 17. doi: 10.1007/s12223-025-01342-9.
2
Lactylation in Tumor Immune Escape and Immunotherapy: Multifaceted Functions and Therapeutic Strategies.
Research (Wash D C). 2025 Sep 11;8:0793. doi: 10.34133/research.0793. eCollection 2025.
6
[A risk prediction model for prognosis and immunotherapy response in prostate cancer patients based on immunosuppressive neutrophil Neu_2 subsets].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Aug 20;45(8):1643-1653. doi: 10.12122/j.issn.1673-4254.2025.08.09.
8
Identification of a tumor microenvironment-related gene signature for predicting prognosis in patients with gastric cancer.
Medicine (Baltimore). 2025 Aug 29;104(35):e44032. doi: 10.1097/MD.0000000000044032.
10
Progress in the Application of Single-Cell Sequencing in Neoadjuvant Therapy for Esophageal Cancer.
Cureus. 2025 Jul 31;17(7):e89163. doi: 10.7759/cureus.89163. eCollection 2025 Jul.

本文引用的文献

1
Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies.
Oncol Lett. 2020 Nov;20(5):176. doi: 10.3892/ol.2020.12037. Epub 2020 Aug 31.
2
Clinical development of therapies targeting TGFβ: current knowledge and future perspectives.
Ann Oncol. 2020 Oct;31(10):1336-1349. doi: 10.1016/j.annonc.2020.07.009. Epub 2020 Jul 23.
3
Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases.
Sci Transl Med. 2020 May 27;12(545). doi: 10.1126/scitranslmed.aaz5387.
4
BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial.
Nat Med. 2020 Jun;26(6):878-885. doi: 10.1038/s41591-020-0880-x. Epub 2020 May 25.
6
Loss of p53 drives neuron reprogramming in head and neck cancer.
Nature. 2020 Feb;578(7795):449-454. doi: 10.1038/s41586-020-1996-3. Epub 2020 Feb 12.
7
Why HALO 301 Failed and Implications for Treatment of Pancreatic Cancer.
Pancreas (Fairfax). 2019;3(1):e1-e4. doi: 10.17140/POJ-3-e010. Epub 2019 Dec 20.
8
Inhibition of MDSC Trafficking with SX-682, a CXCR1/2 Inhibitor, Enhances NK-Cell Immunotherapy in Head and Neck Cancer Models.
Clin Cancer Res. 2020 Mar 15;26(6):1420-1431. doi: 10.1158/1078-0432.CCR-19-2625. Epub 2019 Dec 17.
9
Whole-Slide Image Analysis Reveals Quantitative Landscape of Tumor-Immune Microenvironment in Colorectal Cancers.
Clin Cancer Res. 2020 Feb 15;26(4):870-881. doi: 10.1158/1078-0432.CCR-19-1159. Epub 2019 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验