文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

关于瑞德西韦与 SARS-cov-2 的 RNA 依赖性 RNA 聚合酶(RdRp)结合的机制见解。

Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2.

机构信息

Faculty of Pharmacy, Universitas Halu Oleo, Kendari, 93232, Indonesia.

Department of Physics, IPB University, Bogo, 16680, Indonesia.

出版信息

Comput Biol Med. 2021 Feb;129:104156. doi: 10.1016/j.compbiomed.2020.104156. Epub 2020 Nov 27.


DOI:10.1016/j.compbiomed.2020.104156
PMID:33260103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7691827/
Abstract

The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.

摘要

RNA 依赖性 RNA 聚合酶 (RdRp) 是调节 SARS-CoV-2 病毒复制的关键酶。瑞德西韦(RDV)是一种临床应用的靶向 RdRp 的药物,但作用机制仍不清楚。本研究旨在通过分子动力学 (MD) 模拟研究活性瑞德西韦三磷酸 (RDV-TP) 与 RdRp 的结合动力学。我们使用 RdRp 丙型肝炎病毒和最近的 SARS-CoV-2 结构构建了 RdRp 及其 RNA 和锰离子的同源模型。我们确定该模型在 500 ns MD 模拟过程中是稳定的。然后,我们使用该模型在三个独立的 500 ns MD 模拟中研究 RDV-TP 与 RdRp 的结合。结果表明,蛋白质与模板-引物 RNA 的相互作用主要由盐桥相互作用与 RNA 的磷酸基团决定,而与模板-引物 RNA 的碱基对相互作用最小。RDV-TP 的结合表明,磷酸基团的位置位于 NTP 通道的入口处,并且通过与 K551、R553 和 K621 的相互作用得到稳定,而 RDV-TP 上的腺苷基团与模板链的 U2 配对。锰离子位于 D618、D760 和 D761 附近,有助于稳定 RDV-TP 的磷酸基团。进一步,我们从天然产物数据库中鉴定出三个与 RDV-TP 相似的化合物,它们的结合能比 RDV-TP 低,而 SN00359915 的结合自由能比 RDV-TP 低约三倍。

相似文献

[1]
Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2.

Comput Biol Med. 2021-2

[2]
Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase.

J Phys Chem B. 2020-6-23

[3]
Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action.

J Biol Chem. 2020-11-20

[4]
Remdesivir MD Simulations Suggest a More Favourable Binding to SARS-CoV-2 RNA Dependent RNA Polymerase Mutant P323L Than Wild-Type.

Biomolecules. 2021-6-22

[5]
Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.

J Biol Chem. 2020-4-13

[6]
Revealing the Inhibition Mechanism of RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2 by Remdesivir and Nucleotide Analogues: A Molecular Dynamics Simulation Study.

J Phys Chem B. 2020-11-15

[7]
Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir.

J Biol Chem. 2022-2

[8]
Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations.

J Phys Chem B. 2020-12-17

[9]
Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations.

Sci Rep. 2022-11-21

[10]
Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir.

Science. 2020-5-1

引用本文的文献

[1]
Screening and discovery of an antiviral candidate inhibiting the SARS-CoV-2 envelope (2-E) channel.

Curr Res Microb Sci. 2025-5-22

[2]
Binding Mechanism of the Active Form of Molnupiravir to RdRp of SARS-CoV-2 and Designing Potential Analogues: Insights from Molecular Dynamics Simulations.

ACS Omega. 2024-9-24

[3]
Insights into targeting SARS-CoV-2: design, synthesis, studies and antiviral evaluation of new dimethylxanthine derivatives.

RSC Med Chem. 2023-3-21

[4]
Spiro heterocycles bearing piperidine moiety as potential scaffold for antileishmanial activity: synthesis, biological evaluation, and studies.

J Enzyme Inhib Med Chem. 2023-12

[5]
Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations.

Sci Rep. 2022-11-21

[6]
On the Recognition of Natural Substrate CTP and Endogenous Inhibitor ddhCTP of SARS-CoV-2 RNA-Dependent RNA Polymerase: A Molecular Dynamics Study.

J Chem Inf Model. 2022-10-24

[7]
Virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses.

Biomed Pharmacother. 2022-9

[8]
New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations.

J Enzyme Inhib Med Chem. 2022-12

[9]
Structure-guided approach on the role of substitution on amide-linked bipyrazoles and its effect on their anti-inflammatory activity.

J Enzyme Inhib Med Chem. 2022-12

[10]
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.

Chem Rev. 2022-7-13

本文引用的文献

[1]
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.

J Chem Theory Comput. 2010-12-14

[2]
Intermolecular interaction among Remdesivir, RNA and RNA-dependent RNA polymerase of SARS-CoV-2 analyzed by fragment molecular orbital calculation.

J Mol Graph Model. 2020-11

[3]
Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase.

J Phys Chem B. 2020-6-23

[4]
Probable Molecular Mechanism of Remdesivir for the Treatment of COVID-19: Need to Know More.

Arch Med Res. 2020-5-12

[5]
Structure of replicating SARS-CoV-2 polymerase.

Nature. 2020-5-21

[6]
SARS, MERS and SARS-CoV-2 (COVID-19) treatment: a patent review.

Expert Opin Ther Pat. 2020-6-7

[7]
Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir.

Science. 2020-5-1

[8]
SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an perspective.

J Biomol Struct Dyn. 2021-6

[9]
Structure of the RNA-dependent RNA polymerase from COVID-19 virus.

Science. 2020-4-10

[10]
The epidemiology, diagnosis and treatment of COVID-19.

Int J Antimicrob Agents. 2020-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索