Faculty of Pharmacy, Universitas Halu Oleo, Kendari, 93232, Indonesia.
Department of Physics, IPB University, Bogo, 16680, Indonesia.
Comput Biol Med. 2021 Feb;129:104156. doi: 10.1016/j.compbiomed.2020.104156. Epub 2020 Nov 27.
The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.
RNA 依赖性 RNA 聚合酶 (RdRp) 是调节 SARS-CoV-2 病毒复制的关键酶。瑞德西韦(RDV)是一种临床应用的靶向 RdRp 的药物,但作用机制仍不清楚。本研究旨在通过分子动力学 (MD) 模拟研究活性瑞德西韦三磷酸 (RDV-TP) 与 RdRp 的结合动力学。我们使用 RdRp 丙型肝炎病毒和最近的 SARS-CoV-2 结构构建了 RdRp 及其 RNA 和锰离子的同源模型。我们确定该模型在 500 ns MD 模拟过程中是稳定的。然后,我们使用该模型在三个独立的 500 ns MD 模拟中研究 RDV-TP 与 RdRp 的结合。结果表明,蛋白质与模板-引物 RNA 的相互作用主要由盐桥相互作用与 RNA 的磷酸基团决定,而与模板-引物 RNA 的碱基对相互作用最小。RDV-TP 的结合表明,磷酸基团的位置位于 NTP 通道的入口处,并且通过与 K551、R553 和 K621 的相互作用得到稳定,而 RDV-TP 上的腺苷基团与模板链的 U2 配对。锰离子位于 D618、D760 和 D761 附近,有助于稳定 RDV-TP 的磷酸基团。进一步,我们从天然产物数据库中鉴定出三个与 RDV-TP 相似的化合物,它们的结合能比 RDV-TP 低,而 SN00359915 的结合自由能比 RDV-TP 低约三倍。
Curr Res Microb Sci. 2025-5-22
J Chem Theory Comput. 2010-12-14
Arch Med Res. 2020-5-12
Nature. 2020-5-21
Expert Opin Ther Pat. 2020-6-7
J Biomol Struct Dyn. 2021-6
Science. 2020-4-10
Int J Antimicrob Agents. 2020-3-28