Suppr超能文献

利用循环生成对抗网络集合提高青光眼临床试验的统计功效。

Improving statistical power of glaucoma clinical trials using an ensemble of cyclical generative adversarial networks.

机构信息

Centre for Medical Image Computing, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and the Institute of Ophthalmology, University College London, London, United Kingdom.

Université Côte dAzur, Inria, Epione Team, 06902 Sophia Antipolis, France.

出版信息

Med Image Anal. 2021 Feb;68:101906. doi: 10.1016/j.media.2020.101906. Epub 2020 Nov 19.

Abstract

Albeit spectral-domain OCT (SDOCT) is now in clinical use for glaucoma management, published clinical trials relied on time-domain OCT (TDOCT) which is characterized by low signal-to-noise ratio, leading to low statistical power. For this reason, such trials require large numbers of patients observed over long intervals and become more costly. We propose a probabilistic ensemble model and a cycle-consistent perceptual loss for improving the statistical power of trials utilizing TDOCT. TDOCT are converted to synthesized SDOCT and segmented via Bayesian fusion of an ensemble of GANs. The final retinal nerve fibre layer segmentation is obtained automatically on an averaged synthesized image using label fusion. We benchmark different networks using i) GAN, ii) Wasserstein GAN (WGAN) (iii) GAN + perceptual loss and iv) WGAN + perceptual loss. For training and validation, an independent dataset is used, while testing is performed on the UK Glaucoma Treatment Study (UKGTS), i.e. a TDOCT-based trial. We quantify the statistical power of the measurements obtained with our method, as compared with those derived from the original TDOCT. The results provide new insights into the UKGTS, showing a significantly better separation between treatment arms, while improving the statistical power of TDOCT on par with visual field measurements.

摘要

虽然频域光学相干断层扫描 (SD-OCT) 现已用于青光眼管理的临床应用,但已发表的临床试验依赖于时域光学相干断层扫描 (TD-OCT),其特点是信噪比低,导致统计能力低。出于这个原因,此类试验需要在长时间段内观察大量患者,并且成本更高。我们提出了一种概率集成模型和循环一致的感知损失,以提高利用 TD-OCT 的试验的统计能力。TD-OCT 通过使用生成对抗网络 (GAN) 集合的贝叶斯融合转换为合成的 SD-OCT 并进行分割。最终的视网膜神经纤维层分割是通过使用标签融合在平均合成图像上自动获得的。我们使用以下方法对不同的网络进行基准测试:i)GAN、ii)Wasserstein GAN (WGAN)、iii)GAN + 感知损失和 iv)WGAN + 感知损失。训练和验证使用独立的数据集,而测试则在基于 TD-OCT 的 UK 青光眼治疗研究 (UKGTS) 上进行。与原始 TD-OCT 相比,我们量化了我们的方法获得的测量的统计能力。结果提供了对 UKGTS 的新见解,显示治疗组之间的分离明显更好,同时提高了与视野测量相当的 TD-OCT 的统计能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验