Suppr超能文献

生成对抗网络在恢复因眼睛光学介质混浊导致的光学相干断层扫描模糊图像中的应用。

Application of generative adversarial networks in the restoration of blurred optical coherence tomography images caused by optical media opacity in eyes.

作者信息

Wang Zhengfang, Zhou Shuang, Zhang Yeye, Lin Jianwei, Lin Jinyan, Zhu Ming, Ng Tsz Kin, Yang Weifeng, Wang Geng

机构信息

Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.

Qingyuan People's Hospital, Qingyuan, China.

出版信息

BMJ Open Ophthalmol. 2025 May 26;10(1):e001987. doi: 10.1136/bmjophth-2024-001987.

Abstract

PURPOSE

To assess the application of generative adversarial networks (GANs) to restore the blurred optical coherence tomography (OCT) images caused by optical media opacity in eyes.

METHODS

In this cross-sectional study, a spectral-domain OCT (Zeiss Cirrus 5000, Germany) was used to scan the macula of 510 eyes from 272 Chinese subjects. Optical media opacity was simulated with an algorithm for training set (420 normal eyes). Images for three test sets were from the following: 56 normal eyes before and after fitting neutral density filter (NDF), 34 eyes before and after cataract surgeries and 90 eyes processed by algorithm. GANs of pix2pix was trained with training set and restored blurred images in test sets. Structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were used to evaluate the performance of GANs.

RESULTS

PSNR for test sets before and after image restoration was 18.37±0.44 and 19.94±0.29 for NDF (p<0.01), 16.65±0.99 and 16.91±0.26 for cataract (p=0.68) and 18.33±0.55 and 20.83±0.41 for algorithm regenerated graph (p<0.01), respectively. SSIM for test sets before and after image restoration was 0.85±0.02 and 1.00±0.00 for NDF (p<0.01), 0.92±0.07 and 0.97±0.02 for cataract (p<0.01) and 0.86±0.02 and 0.99±0.01 for algorithm regenerated graph (p<0.01), respectively.

CONCLUSIONS

GANs can be used to restore blurred OCT images caused by optical media opacity in eyes. Future studies are warranted to optimise this technique before the application in clinical practice.

摘要

目的

评估生成对抗网络(GANs)在恢复因眼部光学介质混浊而模糊的光学相干断层扫描(OCT)图像中的应用。

方法

在这项横断面研究中,使用光谱域OCT(德国蔡司Cirrus 5000)对272名中国受试者的510只眼睛的黄斑进行扫描。用一种算法模拟光学介质混浊以构建训练集(420只正常眼睛)。三个测试集的图像分别来自以下情况:56只正常眼睛在佩戴中性密度滤光片(NDF)前后、34只眼睛在白内障手术前后以及90只经算法处理的眼睛。使用训练集对pix2pix的GANs进行训练,并恢复测试集中的模糊图像。采用结构相似性指数(SSIM)和峰值信噪比(PSNR)来评估GANs的性能。

结果

图像恢复前后,NDF测试集的PSNR分别为18.37±0.44和19.94±0.29(p<0.01),白内障测试集的PSNR分别为16.65±0.99和16.91±0.26(p = 0.68),算法生成图像测试集的PSNR分别为18.33±0.55和20.83±0.41(p<0.01)。图像恢复前后,NDF测试集的SSIM分别为0.85±0.02和1.00±0.00(p<0.01),白内障测试集的SSIM分别为0.92±0.07和0.97±0.02(p<0.01),算法生成图像测试集的SSIM分别为0.86±0.02和0.99±0.01(p<0.01)。

结论

GANs可用于恢复因眼部光学介质混浊而模糊的OCT图像。在临床实践应用之前,有必要进行进一步研究以优化该技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e709/12107585/0b9d9fb347e1/bmjophth-10-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验