Hunnestad Annie Vera, Vogel Anne Ilse Maria, Armstrong Evelyn, Digernes Maria Guadalupe, Ardelan Murat Van, Hohmann-Marriott Martin Frank
Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Microorganisms. 2020 Nov 29;8(12):1889. doi: 10.3390/microorganisms8121889.
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
铁是海洋环境中一种必需但稀缺的营养物质。浮游植物,尤其是蓝细菌,已经发展出多种机制来获取铁并维持其富含铁的光合机制。铁限制研究通常利用海洋学方法来理解大规模过程,或者基于实验室的分子实验来在细胞水平上识别潜在的分子机制。在这里,我们旨在强调这两种方法的益处,以促进对铁限制对蓝细菌影响的跨学科理解,重点是避免合作初期的陷阱。特别是,我们讨论了痕量金属清洁方法与无菌技术的结合使用,以及建立新的合作以结合跨学科技术时所面临的挑战。还讨论并评估了产生可靠数据所需的方法,如高分辨率电感耦合等离子体质谱法(HR-ICP-MS)、流动注射分析化学发光法(FIA-CL)和77K荧光发射光谱法,并包含一份技术手册,其中包括人工海水培养基Aquil的制备、清洁程序以及铁限制实验的采样方案。本文为研究人员在跨越蓝细菌生理学、分子生物学和生物地球化学的跨学科铁研究中实施不同技术提供了一个参考点。