Suppr超能文献

基于从三维原始点云提取全局空间轴的隧道变形检测

Tunnel Deformation Inspection via Global Spatial Axis Extraction from 3D Raw Point Cloud.

作者信息

Yi Cheng, Lu Dening, Xie Qian, Xu Jinxuan, Wang Jun

机构信息

College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.

College of Computer Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.

出版信息

Sensors (Basel). 2020 Nov 28;20(23):6815. doi: 10.3390/s20236815.

Abstract

Global inspection of large-scale tunnels is a fundamental yet challenging task to ensure the structural stability of tunnels and driving safety. Advanced LiDAR scanners, which sample tunnels into 3D point clouds, are making their debut in the Tunnel Deformation Inspection (TDI). However, the acquired raw point clouds inevitably possess noticeable occlusions, missing areas, and noise/outliers. Considering the tunnel as a geometrical sweeping feature, we propose an effective tunnel deformation inspection algorithm by extracting the global spatial axis from the poor-quality raw point cloud. Essentially, we convert tunnel axis extraction into an iterative fitting optimization problem. Specifically, given the scanned raw point cloud of a tunnel, the initial design axis is sampled to generate a series of normal planes within the corresponding Frenet frame, followed by intersecting those planes with the tunnel point cloud to yield a sequence of cross sections. By fitting cross sections with circles, the fitted circle centers are approximated with a B-Spline curve, which is considered as an updated axis. The procedure of "circle fitting and B-SPline approximation" repeats iteratively until convergency, that is, the distance of each fitted circle center to the current axis is smaller than a given threshold. By this means, the spatial axis of the tunnel can be accurately obtained. Subsequently, according to the practical mechanism of tunnel deformation, we design a segmentation approach to partition cross sections into meaningful pieces, based on which various inspection parameters can be automatically computed regarding to tunnel deformation. A variety of practical experiments have demonstrated the feasibility and effectiveness of our inspection method.

摘要

对大型隧道进行全面检测是确保隧道结构稳定性和行车安全的一项基础性但具有挑战性的任务。先进的激光雷达扫描仪可将隧道采样为三维点云,正首次应用于隧道变形检测(TDI)。然而,采集到的原始点云不可避免地存在明显的遮挡、缺失区域以及噪声/离群值。将隧道视为一种几何扫描特征,我们提出了一种有效的隧道变形检测算法,通过从质量较差的原始点云中提取全局空间轴线来实现。从本质上讲,我们将隧道轴线提取转化为一个迭代拟合优化问题。具体而言,给定扫描得到的隧道原始点云,对初始设计轴线进行采样,以在相应的弗伦内特标架内生成一系列法平面,随后将这些平面与隧道点云相交以得到一系列横截面。通过用圆拟合横截面,将拟合圆的圆心用一条B样条曲线近似,该曲线被视为更新后的轴线。“圆拟合和B样条近似”的过程反复迭代直至收敛,即每个拟合圆的圆心到当前轴线的距离小于给定阈值。通过这种方式,可以准确获得隧道的空间轴线。随后,根据隧道变形的实际机理,我们设计了一种分割方法,将横截面分割成有意义的部分,在此基础上可以自动计算出与隧道变形相关的各种检测参数。各种实际实验证明了我们检测方法的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54db/7730831/50ca719a5631/sensors-20-06815-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验