Suppr超能文献

当数学遇到手术:如何改善 ACL 重建中股骨干扰螺钉的对线。尸体研究。

When math meets surgery: how to improve femoral interference screw alignment in ACL reconstruction. A cadaveric study.

机构信息

Department of Orthopaedic and Traumatology, University of Torino, Torino, Italy.

EniProgetti S.p.A., University of Padova, Italy.

出版信息

J Biol Regul Homeost Agents. 2020 Jul-Aug;34(4 Suppl. 3):377-391. Congress of the Italian Orthopaedic Research Society.

Abstract

Transtibial femoral tunnel drilling is still an alternative technique in ACL reconstruction. Femoral interference screw divergence is a potential pitfall associated with transtibial tunnel technique, as angles greater than 15° jeopardize graft fixation. Our mathematical model theorizes the proper degrees of knee flexion during femoral screw insertion and the correct screwdriver position to obtain a minimal divergence of the screw in the femoral tunnel. The cadaveric study confirms our method. Mathematical model: using rototranslation matrices, a correlation is demonstrated between the ACLtibial- guide angle, the knee flexion, and the screwdriver position. A theoretical minimal divergence between femoral interference screw and the femoral tunnel is obtainable following these assumptions: 1) knee hyperflexion during femoral screw insertion is obtained adding a flexion corresponding to the ACL-tibial-guide angle to the flexion while drilling the femoral tunnel; 2) screwdriver position (through the AM portal) is kept parallel to tibial plateau at a rotation of 15° medial to tibial sagittal plane. Cadaveric study: 24 cadaver knees were used. The transtibial tunnel was drilled with an 8 mm drill bit with the help of an ACL tibial guide set at 55°. To simulate femoral tunnel direction, a 2.4 mm K. wire was drilled through the femur with a transtibial 7 mm offset femoral drill guide. To simulate the femoral screw direction, a second 2.4 mm K. wire was drilled from the femoral entry point of the first wire through the femur, with a cannulated screwdriver. Screwdriver direction and knee flexion during the simulation were obtained following two different methods: GROUP A (mathematical model group, 12 knees), screwdriver direction and knee flexion were calculated following the mathematical model; in GROUP B (control group, 12 knees), knee hyperflexion and screwdriver medialization were manually obtained by a senior surgeon. The divergence between the femoral interference screw and the femoral tunnel was identified as the angle formed by the two wires, measured on the plane formed by the direction of the wires. Mean divergence angles between the K. wires were significantly different (p< 0.05) between the groups: GROUP 1 (mathematical rule): 7.25° (SD 2.2); GROUP 2 (free-hand technique): 17.3° (SD 2.9). Our study shows that a minimal divergence between the femoral tunnel and the screwdriver can be achieved simply by following a mathematical rule for correct intraoperative knee flexion and screwdriver position without the need for any specialized instrumentation. Namely, during femoral interference screw insertion through the anteromedial portal: 1) the correct knee flexion is the sum between the knee flexion angle while drilling the transtibial femoral tunnel AND the ACL tibial guide angle used during tibial tunnel drilling; 2) Correct screwdriver position is parallel to the tibial plateau, engaging the femoral tunnel with a position of 15° medial to tibial sagittal plane. This simple concept has clinical relevance in helping the surgeons in obtaining an optimal alignment between the femoral tunnel and the femoral interference screw during transtibial ACL reconstruction. Furthermore, following the assumptions of this study, a starting knee flexion angle around 70° during femoral tunnel drilling seems preferable for ACL reconstruction when the transtibial tunnel technique is used. Indeed, because ACL-tibial-guide angles range commonly from 50° to 60° and in vivo, the maximal intraoperative knee flexion attainable is 130°, a starting knee flexion around 70° is optimal to allows for adding flexion angles up to 60° before reaching the physiological limit value of 130°.

摘要

经胫骨股骨隧道钻孔仍然是 ACL 重建的一种替代技术。股骨干扰螺钉发散是与经胫骨隧道技术相关的潜在陷阱,因为角度大于 15°会危及移植物固定。我们的数学模型理论化了在股骨螺钉插入过程中膝关节适当的弯曲程度和获得股骨隧道中螺钉最小发散的正确螺丝刀位置。尸体研究证实了我们的方法。数学模型:使用旋转变换矩阵,证明 ACL-胫骨导向角度、膝关节弯曲度和螺丝刀位置之间存在相关性。在以下假设下,可以获得股骨干扰螺钉和股骨隧道之间理论上最小的发散:1)在股骨螺钉插入过程中获得膝关节过度伸展,即在钻孔股骨隧道时将 ACL-胫骨导向角度对应的弯曲度添加到弯曲度中;2)螺丝刀位置(通过 AM 端口)保持与胫骨平台平行,在胫骨矢状面内侧旋转 15°。尸体研究:使用 24 个尸体膝关节。使用 ACL 胫骨导向器在 55°的帮助下用 8mm 钻头钻孔经胫骨隧道。为了模拟股骨隧道方向,通过股骨用 2.4mm K 线钻一个 7mm 胫骨偏移股骨钻孔导向器。为了模拟股骨螺钉方向,用第二根 2.4mm K 线从第一根 K 线的股骨入口穿过股骨,用带套管的螺丝刀钻孔。模拟股骨螺钉方向和膝关节弯曲度采用两种不同的方法:A 组(数学模型组,12 个膝关节),根据数学模型计算股骨螺钉方向和膝关节弯曲度;B 组(对照组,12 个膝关节),由一名高级外科医生手动获得膝关节过度伸展和螺丝刀内侧化。股骨干扰螺钉和股骨隧道之间的发散度被确定为两条线形成的角度,在由两条线的方向形成的平面上测量。两组之间的 K 线发散角差异显著(p<0.05):组 1(数学规则):7.25°(SD 2.2);组 2(徒手技术):17.3°(SD 2.9)。我们的研究表明,通过遵循正确的术中膝关节弯曲度和螺丝刀位置的数学规则,而无需任何特殊仪器,可以实现股骨隧道和螺丝刀之间的最小发散,无需任何特殊仪器。即在通过前内侧入路插入股骨干扰螺钉时:1)正确的膝关节弯曲度是钻孔胫骨隧道时的膝关节弯曲度角度与胫骨隧道钻孔时使用的 ACL 胫骨导向器角度之和;2)正确的螺丝刀位置与胫骨平台平行,与胫骨矢状面内侧 15°的位置与股骨隧道啮合。这一简单的概念在帮助外科医生在经胫骨 ACL 重建中获得股骨隧道和股骨干扰螺钉之间的最佳对准方面具有临床意义。此外,根据本研究的假设,当使用经胫骨隧道技术时,在股骨隧道钻孔过程中,膝关节起始弯曲度约为 70°似乎更有利于 ACL 重建。事实上,因为 ACL-胫骨导向器角度通常在 50°到 60°之间,而在体内,术中可达到的最大膝关节弯曲度为 130°,因此,起始膝关节弯曲度约为 70°是最佳的,可以增加 60°的弯曲度,然后再达到 130°的生理极限值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验