Suppr超能文献

网络时间性可以促进和抑制信息传播。

Network temporality can promote and suppress information spreading.

作者信息

Xue Xiaoyu, Pan Liming, Zheng Muhua, Wang Wei

机构信息

College of Cybersecurity, Sichuan University, Chengdu 610065, China.

School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China.

出版信息

Chaos. 2020 Nov;30(11):113136. doi: 10.1063/5.0027758.

Abstract

Temporality is an essential characteristic of many real-world networks and dramatically affects the spreading dynamics on networks. In this paper, we propose an information spreading model on temporal networks with heterogeneous populations. Individuals are divided into activists and bigots to describe the willingness to accept the information. Through a developed discrete Markov chain approach and extensive numerical simulations, we discuss the phase diagram of the model and the effects of network temporality. From the phase diagram, we find that the outbreak phase transition is continuous when bigots are relatively rare, and a hysteresis loop emerges when there are a sufficient number of bigots. The network temporality does not qualitatively alter the phase diagram. However, we find that the network temporality affects the spreading outbreak size by either promoting or suppressing, which relies on the heterogeneities of population and of degree distribution. Specifically, in networks with homogeneous and weak heterogeneous degree distribution, the network temporality suppresses (promotes) the information spreading for small (large) values of information transmission probability. In networks with strong heterogeneous degree distribution, the network temporality always promotes the information spreading when activists dominate the population, or there are relatively fewer activists. Finally, we also find the optimal network evolution scale, under which the network information spreading is maximized.

摘要

时间性是许多现实世界网络的一个基本特征,并且极大地影响网络上的传播动态。在本文中,我们提出了一个关于具有异质群体的时间网络的信息传播模型。个体被分为积极分子和偏执者,以描述接受信息的意愿。通过一种改进的离散马尔可夫链方法和广泛的数值模拟,我们讨论了该模型的相图以及网络时间性的影响。从相图中我们发现,当偏执者相对较少时,爆发相变是连续的,而当有足够数量的偏执者时会出现一个滞后回线。网络时间性并没有定性地改变相图。然而,我们发现网络时间性通过促进或抑制来影响传播爆发规模,这取决于群体和度分布的异质性。具体而言,在具有均匀和弱异质度分布的网络中,对于小(大)的信息传输概率值,网络时间性抑制(促进)信息传播。在具有强异质度分布的网络中,当积极分子在群体中占主导地位或积极分子相对较少时,网络时间性总是促进信息传播。最后,我们还找到了最优的网络演化规模,在该规模下网络信息传播最大化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验