Suppr超能文献

异质自我保护意识对资源-疫情协同进化动态的影响。

Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics.

作者信息

Chen Xiaolong, Gong Kai, Wang Ruijie, Cai Shimin, Wang Wei

机构信息

School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu 611130, China.

Financial Intelligence and Financial Engineering Key Laboratory of Sichuan Province, School of Economic Information Engineering, Chengdu 611130, China.

出版信息

Appl Math Comput. 2020 Nov 15;385:125428. doi: 10.1016/j.amc.2020.125428. Epub 2020 Jun 20.

Abstract

Recent studies have demonstrated that the allocation of individual resources has a significant influence on the dynamics of epidemic spreading. In the real scenario, individuals have a different level of awareness for self-protection when facing the outbreak of an epidemic. To investigate the effects of the heterogeneous self-awareness distribution on the epidemic dynamics, we propose a resource-epidemic coevolution model in this paper. We first study the effects of the heterogeneous distributions of node degree and self-awareness on the epidemic dynamics on artificial networks. Through extensive simulations, we find that the heterogeneity of self-awareness distribution suppresses the outbreak of an epidemic, and the heterogeneity of degree distribution enhances the epidemic spreading. Next, we study how the correlation between node degree and self-awareness affects the epidemic dynamics. The results reveal that when the correlation is positive, the heterogeneity of self-awareness restrains the epidemic spreading. While, when there is a significant negative correlation, strong heterogeneous or strong homogeneous distribution of the self-awareness is not conducive for disease suppression. We find an optimal heterogeneity of self-awareness, at which the disease can be suppressed to the most extent. Further research shows that the epidemic threshold increases monotonously when the correlation changes from most negative to most positive, and a critical value of the correlation coefficient is found. When the coefficient is below the critical value, an optimal heterogeneity of self-awareness exists; otherwise, the epidemic threshold decreases monotonously with the decline of the self-awareness heterogeneity. At last, we verify the results on four typical real-world networks and find that the results on the real-world networks are consistent with those on the artificial network.

摘要

最近的研究表明,个体资源的分配对疫情传播动态有重大影响。在现实场景中,个体在面对疫情爆发时自我保护意识水平不同。为了研究异质自我意识分布对疫情动态的影响,我们在本文中提出了一个资源 - 疫情协同进化模型。我们首先研究节点度和自我意识的异质分布对人工网络上疫情动态的影响。通过大量模拟,我们发现自我意识分布的异质性抑制了疫情爆发,而度分布的异质性增强了疫情传播。接下来,我们研究节点度与自我意识之间的相关性如何影响疫情动态。结果表明,当相关性为正时,自我意识的异质性抑制疫情传播。而当存在显著负相关时,自我意识的强异质或强同质分布都不利于疾病抑制。我们发现了自我意识的一个最优异质性,在这个最优异质性下疾病能得到最大程度的抑制。进一步研究表明,当相关性从最负变为最正时,疫情阈值单调增加,并发现了一个相关系数的临界值。当系数低于临界值时,存在自我意识的最优异质性;否则,疫情阈值随着自我意识异质性的下降而单调降低。最后,我们在四个典型的真实世界网络上验证了结果,发现真实世界网络上的结果与人工网络上的结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffcc/7305516/3d10698907c8/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验