Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
Plant Physiol Biochem. 2021 Jan;158:265-274. doi: 10.1016/j.plaphy.2020.11.009. Epub 2020 Nov 16.
The chloroplastic lipocalin (LCNP) is induced in response to various abiotic stresses including high light, dehydration and low temperature. It contributes to protection against oxidative damage promoted by adverse conditions by preventing accumulation of fatty acid hydroperoxides and lipid peroxidation. In contrast to animal lipocalins, LCNP is poorly characterized and the molecular mechanism by which it exerts protective effects during oxidative stress is largely unknown. LCNP is considered the ortholog of human apolipoprotein D (APOD), a protein whose lipid antioxidant function has been characterized. Here, we investigated whether APOD could functionally replace LCNP in Arabidopsis thaliana. We introduced APOD cDNA fused to a chloroplast transit peptide encoding sequence in an Arabidopsis LCNP KO mutant line and challenged the transgenic plants with different abiotic stresses. We demonstrated that expression of human APOD in Arabidopsis can partially compensate for the lack of the plastid lipocalin. The results are consistent with a conserved function of APOD and LCNP under stressful conditions. However, if the results obtained with the drought and oxidative stresses point to the protective effect of constitutive expression of APOD in plants lacking LCNP, this effect is not as effective as that conferred by LCNP overexpression. Moreover, when investigating APOD function in thylakoids after high light stress at low temperature, it appeared that APOD could not contribute to qH, a slowly reversible form of non-photochemical chlorophyll fluorescence quenching, as described for LCNP. This work provides a base of understanding the molecular mechanism underlying LCNP protective function.
质体脂联素(LCNP)是响应各种非生物胁迫诱导产生的,包括高光、干旱和低温。它通过防止脂肪酸氢过氧化物和脂质过氧化的积累,有助于防止不利条件下的氧化损伤。与动物脂联素不同,LCNP 的特征描述较差,其在氧化应激中发挥保护作用的分子机制在很大程度上尚不清楚。LCNP 被认为是人类载脂蛋白 D(APOD)的同源物,APOD 是一种其脂质抗氧化功能已被描述的蛋白质。在这里,我们研究了 APOD 是否可以在拟南芥中替代 LCNP 的功能。我们将 APOD cDNA 与质体转运肽编码序列融合,导入拟南芥 LCNP KO 突变体系中,并对转基因植物进行了不同的非生物胁迫处理。我们证明了人类 APOD 在拟南芥中的表达可以部分补偿质体脂联素的缺乏。这些结果与 APOD 和 LCNP 在应激条件下的保守功能一致。然而,如果干旱和氧化应激的结果表明,在缺乏 LCNP 的植物中组成型表达 APOD 具有保护作用,那么这种作用不如 LCNP 过表达的作用有效。此外,当在低温高光胁迫下研究 APOD 在类囊体中的功能时,APOD 似乎不能像 LCNP 那样有助于 qH,qH 是一种缓慢可逆的非光化学叶绿素荧光猝灭形式。这项工作为理解 LCNP 保护功能的分子机制提供了基础。
BMC Plant Biol. 2008-7-31
Plant Physiol Biochem. 2013-10-30
Antioxidants (Basel). 2023-4-28
Front Physiol. 2021-10-7
Cell Mol Life Sci. 2021-10