文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SARS-CoV-2 感染与疫苗的免疫学

The immunology of SARS-CoV-2 infections and vaccines.

机构信息

Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States.

Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States.

出版信息

Semin Immunol. 2020 Aug;50:101422. doi: 10.1016/j.smim.2020.101422. Epub 2020 Nov 17.


DOI:10.1016/j.smim.2020.101422
PMID:33262067
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7670910/
Abstract

SARS-CoV-2, the virus that causes COVID-19, emerged in late 2019, and was declared a global pandemic on March 11th 2020. With over 50 million cases and 1.2 million deaths around the world, to date, this pandemic represents the gravest global health crisis of our times. Thus, the race to develop a COVID-19 vaccine is an urgent global imperative. At the time of writing, there are over 165 vaccine candidates being developed, with 33 in various stages of clinical testing. In this review, we discuss emerging insights about the human immune response to SARS-CoV-2, and their implications for vaccine design. We then review emerging knowledge of the immunogenicity of the numerous vaccine candidates that are currently being tested in the clinic and discuss the range of immune defense mechanisms that can be harnessed to develop novel vaccines that confer durable protection against SARS-CoV-2. Finally, we conclude with a discussion of the potential role of a systems vaccinology approach in accelerating the clinical testing of vaccines, to meet the urgent needs posed by the pandemic.

摘要

导致 COVID-19 的病毒 SARS-CoV-2 于 2019 年末出现,并于 2020 年 3 月 11 日被宣布为全球大流行。迄今为止,全球已报告超过 5000 万例病例和 120 万人死亡,这一疫情是我们这个时代最严重的全球卫生危机。因此,开发 COVID-19 疫苗是当务之急。在撰写本文时,已经有超过 165 种候选疫苗正在开发中,其中 33 种处于不同的临床测试阶段。在这篇综述中,我们讨论了人类对 SARS-CoV-2 的免疫反应的新见解,以及它们对疫苗设计的影响。然后,我们回顾了目前正在临床测试的众多候选疫苗的免疫原性的新认识,并讨论了可以利用的一系列免疫防御机制,以开发针对 SARS-CoV-2 提供持久保护的新型疫苗。最后,我们讨论了系统疫苗学方法在加速疫苗临床测试以满足大流行带来的紧迫需求方面的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/df5afe553557/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/334b27709d43/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/a39c25cc66ef/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/cf2c6def8632/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/da1c7c4e4b57/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/35dc8a24f687/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/df5afe553557/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/334b27709d43/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/a39c25cc66ef/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/cf2c6def8632/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/da1c7c4e4b57/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/35dc8a24f687/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/7784628/df5afe553557/gr6.jpg

相似文献

[1]
The immunology of SARS-CoV-2 infections and vaccines.

Semin Immunol. 2020-8

[2]
Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2.

J Virol. 2021-11-9

[3]
Immune Profile and Clinical Outcome of Breakthrough Cases After Vaccination With an Inactivated SARS-CoV-2 Vaccine.

Front Immunol. 2021

[4]
Adjuvanting a subunit COVID-19 vaccine to induce protective immunity.

Nature. 2021-6

[5]
Transforming vaccine development.

Semin Immunol. 2020-8

[6]
Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women.

JAMA. 2021-6-15

[7]
A Review of the Progress and Challenges of Developing a Vaccine for COVID-19.

Front Immunol. 2020-10-14

[8]
Can immune responses predict which vaccines work best?

Science. 2021-7-9

[9]
The continued advance of vaccine adjuvants - 'we can work it out'.

Semin Immunol. 2020-8

[10]
Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman primates.

Cell Mol Immunol. 2022-2

引用本文的文献

[1]
Lung-resident SARS-CoV-2 peptide-specific immune responses in perfused 3D human lung explant models.

Front Bioeng Biotechnol. 2025-7-8

[2]
COVID-19 Vaccination in Liver Cirrhosis: Safety and Immune and Clinical Responses.

GE Port J Gastroenterol. 2023-11-15

[3]
A retrospective study suggests 55 days of persistence of SARS-CoV-2 during the first wave of the pandemic in Santiago de Chile.

Heliyon. 2024-1-18

[4]
Cell immunity to SARS-CoV-2 after natural infection and/or different vaccination regimens.

Front Cell Infect Microbiol. 2024

[5]
Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants.

Curr Microbiol. 2024-2-5

[6]
Humoral and Cellular Immune Response after Three Doses of Sinopharm [Vero Cell]-Inactivated COVID-19 Vaccine in Combination with SARS-CoV-2 Infection Leads to Hybrid Immunity.

Pharmaceuticals (Basel). 2024-1-17

[7]
Construction of Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection.

Vaccines (Basel). 2023-9-25

[8]
Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response.

Front Immunol. 2023

[9]
Vertical Transmission of SARS-CoV-2-Specific Antibodies and Cytokine Profiles in Pregnancy.

J Infect Dis. 2024-2-14

[10]
Antibody titer after administration of mRNA-based vaccine against severe acute respiratory syndrome coronavirus 2 in liver transplant recipients.

Ann Gastroenterol Surg. 2023-4-19

本文引用的文献

[1]
Key criteria for the ethical acceptability of COVID-19 human challenge studies: Report of a WHO Working Group.

Vaccine. 2021-1-22

[2]
Endotoxemia and circulating bacteriome in severe COVID-19 patients.

Intensive Care Med Exp. 2020-12-7

[3]
Clinical characteristics of recovered COVID-19 patients with re-detectable positive RNA test.

Ann Transl Med. 2020-9

[4]
NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge.

Vaccine. 2020-10-23

[5]
Robust neutralizing antibodies to SARS-CoV-2 infection persist for months.

Science. 2020-10-28

[6]
Genomic evidence for reinfection with SARS-CoV-2: a case study.

Lancet Infect Dis. 2021-1

[7]
Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients.

Sci Immunol. 2020-10-8

[8]
Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients.

Sci Immunol. 2020-10-8

[9]
Humoral response and PCR positivity in patients with COVID-19 in the New York City region, USA: an observational study.

Lancet Microbe. 2020-11

[10]
Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.

Cell. 2020-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索