Petrache Alexandra L, Khan Archie A, Nicholson Martin W, Monaco Alessandra, Kuta-Siejkowska Martyna, Haider Shozeb, Hilton Stephen, Jovanovic Jasmina N, Ali Afia B
UCL School of Pharmacy, London, United Kingdom.
Front Cell Neurosci. 2020 Nov 11;14:568194. doi: 10.3389/fncel.2020.568194. eCollection 2020.
Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABA receptors (GABARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer's disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the expression of α5 GABARs, consequently altering synaptic function during AD pathogenesis. Using medicinal chemistry and computational modeling, we developed aqueous soluble hybrids of 6,6-dimethyl-3-(2-hydroxyethyl) thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophene-4(5H)-one, that demonstrated selective binding and high negative allosteric modulation, specifically for the α5 GABAR subtypes in constructed HEK293 stable cell-lines. Using a knock-in mouse model of AD ( ), which expresses a mutant form of human amyloid-β (Aβ), we performed immunofluorescence studies combined with electrophysiological whole-cell recordings to investigate the effects of our key molecule, α5-SOP002 in the hippocampal CA1 region. In aged mice, selective preservation of α5 GABARs was observed in, calretinin- (CR), cholecystokinin- (CCK), somatostatin- (SST) expressing interneurons, and pyramidal cells. Previously, we reported that CR dis-inhibitory interneurons, specialized in regulating other interneurons displayed abnormally high levels of synaptic inhibition in the mouse model, here we show that this excessive inhibition was "normalized" to control values with bath-applied α5-SOP002 (1 μM). However, α5-SOP002, further inhibition onto CCK and pyramidal cells that were already largely compromised by exhibiting a of inhibition in the AD model. In summary, using a multi-disciplinary approach, we show that exposure to α5 GABAR NAMs may further compromise aberrant synapses in AD. We, therefore, suggest that the α5 GABAR is not a suitable therapeutic target for the treatment of AD or other cognitive deficits due to the widespread neuronal-networks that use α5 GABARs.
选择性负变构调节剂(NAMs)靶向含α5亚基的GABA受体(GABARs),将其作为与认知缺陷相关疾病(包括阿尔茨海默病(AD))的潜在治疗靶点,但临床试验持续失败。我们研究了这是否是由于α5 GABARs表达的变化,从而在AD发病过程中改变了突触功能。利用药物化学和计算模型,我们开发了6,6 - 二甲基 - 3 -(2 - 羟乙基)硫代 - 1 -(噻唑 - 2 - 基)- 6,7 - 二氢 - 2 - 苯并噻吩 - 4(5H)- 酮的水溶性杂化物,其在构建的HEK293稳定细胞系中表现出对α5 GABAR亚型的选择性结合和高负变构调节作用。使用AD的基因敲入小鼠模型(该模型表达人淀粉样β蛋白(Aβ)的突变形式),我们进行了免疫荧光研究并结合全细胞膜片钳电生理记录,以研究我们的关键分子α5 - SOP002在海马CA1区的作用。在老年小鼠中,在表达钙视网膜蛋白(CR)、胆囊收缩素(CCK)、生长抑素(SST)的中间神经元以及锥体细胞中观察到α5 GABARs的选择性保留。此前,我们报道在该小鼠模型中,专门调节其他中间神经元的CR去抑制性中间神经元表现出异常高水平的突触抑制,在此我们表明,通过浴加α5 - SOP002(1 μM),这种过度抑制被“归一化”至对照值。然而,α5 - SOP002进一步抑制了CCK中间神经元和锥体细胞,而在AD模型中这些细胞已经因抑制增加而受到很大损害。总之,通过多学科方法,我们表明暴露于α5 GABAR NAMs可能会进一步损害AD中异常的突触。因此,我们认为由于广泛使用α5 GABARs的神经网络,α5 GABAR不是治疗AD或其他认知缺陷的合适治疗靶点。