基于3D掩码区域卷积神经网络的数字乳腺断层合成中的肿块检测与分割:对比分析

Mass Detection and Segmentation in Digital Breast Tomosynthesis Using 3D-Mask Region-Based Convolutional Neural Network: A Comparative Analysis.

作者信息

Fan Ming, Zheng Huizhong, Zheng Shuo, You Chao, Gu Yajia, Gao Xin, Peng Weijun, Li Lihua

机构信息

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Front Mol Biosci. 2020 Nov 11;7:599333. doi: 10.3389/fmolb.2020.599333. eCollection 2020.

Abstract

Digital breast tomosynthesis (DBT) is an emerging breast cancer screening and diagnostic modality that uses quasi-three-dimensional breast images to provide detailed assessments of the dense tissue within the breast. In this study, a framework of a 3D-Mask region-based convolutional neural network (3D-Mask RCNN) computer-aided diagnosis (CAD) system was developed for mass detection and segmentation with a comparative analysis of performance on patient subgroups with different clinicopathological characteristics. To this end, 364 samples of DBT data were used and separated into a training dataset ( = 201) and a testing dataset ( = 163). The detection and segmentation results were evaluated on the testing set and on subgroups of patients with different characteristics, including different age ranges, lesion sizes, histological types, lesion shapes and breast densities. The results of our 3D-Mask RCNN framework were compared with those of the 2D-Mask RCNN and Faster RCNN methods. For lesion-based mass detection, the sensitivity of 3D-Mask RCNN-based CAD was 90% with 0.8 false positives (FPs) per lesion, whereas the sensitivity of the 2D-Mask RCNN- and Faster RCNN-based CAD was 90% at 1.3 and 2.37 FPs/lesion, respectively. For breast-based mass detection, the 3D-Mask RCNN generated a sensitivity of 90% at 0.83 FPs/breast, and this framework is better than the 2D-Mask RCNN and Faster RCNN, which generated a sensitivity of 90% with 1.24 and 2.38 FPs/breast, respectively. Additionally, the 3D-Mask RCNN achieved significantly ( < 0.05) better performance than the 2D methods on subgroups of samples with characteristics of ages ranged from 40 to 49 years, malignant tumors, spiculate and irregular masses and dense breast, respectively. Lesion segmentation using the 3D-Mask RCNN achieved an average precision (AP) of 0.934 and a false negative rate (FNR) of 0.053, which are better than those achieved by the 2D methods. The results suggest that the 3D-Mask RCNN CAD framework has advantages over 2D-based mass detection on both the whole data and subgroups with different characteristics.

摘要

数字乳腺断层合成(DBT)是一种新兴的乳腺癌筛查和诊断方式,它使用准三维乳腺图像来详细评估乳腺内的致密组织。在本研究中,开发了一种基于3D掩码区域卷积神经网络(3D-Mask RCNN)的计算机辅助诊断(CAD)系统框架,用于肿块检测和分割,并对具有不同临床病理特征的患者亚组的性能进行了比较分析。为此,使用了364份DBT数据样本,并将其分为训练数据集(=201)和测试数据集(=163)。在测试集以及具有不同特征的患者亚组上评估检测和分割结果,这些特征包括不同的年龄范围、病变大小、组织学类型、病变形状和乳腺密度。将我们的3D-Mask RCNN框架的结果与2D-Mask RCNN和Faster RCNN方法的结果进行了比较。对于基于病变的肿块检测,基于3D-Mask RCNN的CAD的灵敏度为90%,每个病变的假阳性(FP)为0.8个,而基于2D-Mask RCNN和Faster RCNN的CAD的灵敏度分别为90%,每个病变的FP为1.3个和2.37个。对于基于乳腺的肿块检测,3D-Mask RCNN在每个乳腺0.83个FP时产生的灵敏度为90%,并且该框架优于2D-Mask RCNN和Faster RCNN,它们在每个乳腺1.24个和2.38个FP时产生的灵敏度为90%。此外,在年龄范围为40至49岁、恶性肿瘤、有毛刺和不规则肿块以及致密乳腺特征的样本亚组上,3D-Mask RCNN的性能明显(<0.05)优于2D方法。使用3D-Mask RCNN进行病变分割的平均精度(AP)为0.934,假阴性率(FNR)为0.053,优于2D方法。结果表明,3D-Mask RCNN CAD框架在整个数据以及具有不同特征的亚组上,在基于2D的肿块检测方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070a/7686533/0c7c95b8f897/fmolb-07-599333-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索