Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
PLoS One. 2020 Dec 2;15(12):e0242686. doi: 10.1371/journal.pone.0242686. eCollection 2020.
Biofilms are community structures of bacteria enmeshed in a self-produced matrix of exopolysaccharides. The biofilm matrix serves numerous roles, including resilience and persistence, making biofilms a subject of research interest among persistent clinical pathogens of global health importance. Our current understanding of the underlying biochemical pathways responsible for biosynthesis of these exopolysaccharides is largely limited to Gram-negative bacteria. Clostridia are a class of Gram-positive, anaerobic and spore-forming bacteria and include the important human pathogens Clostridium perfringens, Clostridium botulinum and Clostridioides difficile, among numerous others. Several species of Clostridia have been reported to produce a biofilm matrix that contains an acetylated glucan linked to a series of hypothetical genes. Here, we propose a model for the function of these hypothetical genes, which, using homology modelling, we show plausibly encode a synthase complex responsible for polymerization, modification and export of an O-acetylated cellulose exopolysaccharide. Specifically, the cellulose synthase is homologous to that of the known exopolysaccharide synthases in Gram-negative bacteria. The remaining proteins represent a mosaic of evolutionary lineages that differ from the described Gram-negative cellulose exopolysaccharide synthases, but their predicted functions satisfy all criteria required for a functional cellulose synthase operon. Accordingly, we named these hypothetical genes ccsZABHI, for the Clostridial cellulose synthase (Ccs), in keeping with naming conventions for exopolysaccharide synthase subunits and to distinguish it from the Gram-negative Bcs locus with which it shares only a single one-to-one ortholog. To test our model and assess the identity of the exopolysaccharide, we subcloned the putative glycoside hydrolase encoded by ccsZ and solved the X-ray crystal structure of both apo- and product-bound CcsZ, which belongs to glycoside hydrolase family 5 (GH-5). Although not homologous to the Gram-negative cellulose synthase, which instead encodes the structurally distinct BcsZ belonging to GH-8, we show CcsZ displays specificity for cellulosic materials. This specificity of the synthase-associated glycosyl hydrolase validates our proposal that these hypothetical genes are responsible for biosynthesis of a cellulose exopolysaccharide. The data we present here allowed us to propose a model for Clostridial cellulose synthesis and serves as an entry point to an understanding of cellulose biofilm formation among class Clostridia.
生物膜是细菌在自身产生的胞外多糖基质中形成的群落结构。生物膜基质具有多种功能,包括弹性和持久性,这使得生物膜成为具有全球健康重要性的持久性临床病原体研究的主题。我们目前对负责这些胞外多糖生物合成的基础生化途径的理解在很大程度上仅限于革兰氏阴性菌。梭菌是一类革兰氏阳性、厌氧和产芽孢的细菌,包括重要的人类病原体产气荚膜梭菌、肉毒梭菌和艰难梭菌等。据报道,几种梭菌能够产生一种生物膜基质,其中包含与一系列假设基因相连的乙酰化葡聚糖。在这里,我们提出了这些假设基因功能的模型,通过同源建模,我们表明这些基因可能编码一个负责聚合、修饰和输出 O-乙酰化纤维素外多糖的合成酶复合物。具体来说,纤维素合酶与已知的革兰氏阴性细菌的外多糖合酶同源。其余的蛋白质代表了一个进化谱系的马赛克,与描述的革兰氏阴性纤维素外多糖合酶不同,但它们预测的功能满足功能性纤维素合酶操纵子的所有标准。因此,我们将这些假设基因命名为 ccsZABHI,代表梭菌纤维素合酶(Ccs),与外多糖合酶亚基的命名惯例保持一致,并将其与仅共享单个一对一直系同源物的革兰氏阴性 Bcs 基因座区分开来。为了测试我们的模型并评估外多糖的身份,我们亚克隆了 ccsZ 编码的假定糖苷水解酶,并解决了 apo-和产物结合的 CcsZ 的 X 射线晶体结构,CcsZ 属于糖苷水解酶家族 5(GH-5)。尽管与结构上不同的属于 GH-8 的革兰氏阴性纤维素合酶 BcsZ 没有同源性,但我们表明 CcsZ 对纤维素材料具有特异性。这种与合成酶相关的糖基水解酶的特异性验证了我们的假设,即这些假设基因负责合成纤维素外多糖。我们在这里提出的用于梭菌纤维素合成的模型为理解梭菌属中纤维素生物膜形成提供了一个切入点。