Suppr超能文献

纤维素合酶亚基 G(BcsG)是一种 Zn 依赖性磷酸乙醇胺转移酶。

The cellulose synthase subunit G (BcsG) is a Zn-dependent phosphoethanolamine transferase.

机构信息

Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada.

Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada.

出版信息

J Biol Chem. 2020 May 1;295(18):6225-6235. doi: 10.1074/jbc.RA119.011668. Epub 2020 Mar 9.

Abstract

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens and produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from (BcsG) functions as a phosphoethanolamine transferase with substrate preference for cellulosic materials. Structural characterization of BcsG revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.

摘要

细菌生物膜是产生附着基质的细胞群落。胞外多聚糖是该基质的关键结构组成部分,是多种微生物产生的生物膜组装和结构所必需的。人类细菌病原体 和 产生的生物膜基质主要由胞外多聚糖磷酸乙醇胺(pEtN)纤维素组成。尽管曾经认为这些基质只由未衍生的纤维素组成,但这些基质中存在的 pEtN 修饰与生物膜的整体结构和完整性有关。然而,对于 pEtN 衍生纤维素胞外多聚糖的机制仍然难以理解。细菌纤维素合酶亚基 G(BcsG)是一种预测的内膜定位金属酶,据推测它可以催化将 pEtN 基团从膜磷脂转移到纤维素上。在这里,我们提供的证据表明,来自 (BcsG)的 BcsG 的 C 端结构域作为磷酸乙醇胺转移酶发挥作用,对纤维素材料具有底物偏好性。BcsG 的结构特征表明它属于碱性磷酸酶超家族,在其活性中心含有一个 Zn 离子,并且与在革兰氏阴性菌中赋予粘菌素抗性的特征酶在结构上相似。根据我们的结构研究,我们提出了一个在 AR3110 中的功能互补实验,表明 BcsG 的 C 端结构域的活性对于膜状生物膜的完整性是必不可少的。此外,我们的结果建立了 BcsG 和粘菌素抗性酶之间共享的类似但不同的活性位点结构和催化机制。

相似文献

引用本文的文献

7
9
Inactivation Efficacy of 405 nm LED Against Biofilm.405纳米发光二极管对生物膜的灭活效果
Front Microbiol. 2020 Nov 27;11:610077. doi: 10.3389/fmicb.2020.610077. eCollection 2020.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验