Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil.
Sci Rep. 2024 Sep 29;14(1):22576. doi: 10.1038/s41598-024-70144-9.
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
耐药病原体的流行率不断上升,不仅危及现有治疗方法的效果,还增加了传染病的复杂性和严重性。大肠杆菌是所有与医疗相关感染中最常见的病原体之一。针对细胞外聚合物质 (EPS) 的细菌生物膜的酶处理可用于 EPS 降解,并使致病菌对抗生素的敏感性增加。在这里,我们从嗜热真菌Thermothelomyces thermophilus 中鉴定了三种重组纤维素酶:一种纤维二糖水解酶 I (TthCel7A)、一种内切葡聚糖酶 (TthCel7B) 和一种纤维二糖水解酶 II (TthCel6A),作为水解大肠杆菌和葡糖醋杆菌生物膜的工具。使用设计混合物方法,我们优化了纤维素酶的组成,增强了它们的协同活性,以降解生物膜,并显著减少酶的用量。与细菌纤维素的结晶和有序结构一致,外切葡聚糖酶混合物 (0.5 TthCel7A:0.5 TthCel6A) 可有效水解葡糖醋杆菌生物膜。同时,需要外切葡聚糖酶和内切葡聚糖酶的混合物才能根除大肠杆菌 042 和临床大肠杆菌生物膜,其中酶的比例差异很大 (0.56 TthCel7B:0.44 TthCel6A 和 0.6 TthCel7A:0.4 TthCel7B)。大肠杆菌纤维素的 X 射线衍射图和结晶度指数与羧甲基纤维素 (CMC) 底物相当。我们的结果说明了大肠杆菌生物膜的复杂性,并表明成功的水解是通过特定的纤维素酶组合实现的,其中 TthCel7B 内切葡聚糖酶反复出现。