Çankaya Mehmet Niyazi
Department of International Trading, School of Applied Sciences, Uşak University, Uşak 64200, Turkey.
Department of Statistics, Faculty of Arts and Sciences, Uşak University, Uşak 64200, Turkey.
Entropy (Basel). 2018 Jan 3;20(1):23. doi: 10.3390/e20010023.
The asymmetric bimodal exponential power (ABEP) distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.
非对称双峰指数幂(ABEP)分布是广义伽马分布通过添加两个参数向实数轴的扩展,这两个参数适合于实数轴上双峰性中的峰值形状。该分布的峰值参数的特殊值是实数轴上半拉普拉斯分布和半正态分布的组合。该分布有两个拟合双峰高度的参数,因此通过使用这些参数增强了双峰性的能力。考虑添加一个偏度参数来对数据中的不对称性进行建模。提出了该分布的位置 - 尺度形式。明确获得了ABEP中这些参数的费希尔信息矩阵。研究了ABEP的性质。给出了实际数据示例以说明ABEP的建模能力。提供了从ABEP参数的最大似然估计以及具有人工数据生成程序算法的其他分布中复制的人工数据,以测试与实际数据的相似性。进行了简要的模拟研究。