Vasconcelos Julio Cezar Souza, Cordeiro Gauss Moutinho, Ortega Edwin Moises Marcos, de Rezende Édila Maria
ESALQ, Universidade de São Paulo, Piracicaba, Brazil.
UFPE, Universidade Federal de Pernambuco, Recife, Brazil.
J Appl Stat. 2020 Feb 5;48(2):349-372. doi: 10.1080/02664763.2020.1723503. eCollection 2021.
We define the odd log-logistic exponential Gaussian regression with two systematic components, which extends the heteroscedastic Gaussian regression and it is suitable for bimodal data quite common in the agriculture area. We estimate the parameters by the method of maximum likelihood. Some simulations indicate that the maximum-likelihood estimators are accurate. The model assumptions are checked through case deletion and quantile residuals. The usefulness of the new regression model is illustrated by means of three real data sets in different areas of agriculture, where the data present bimodality.
我们定义了具有两个系统成分的奇对数-逻辑斯谛指数高斯回归,它扩展了异方差高斯回归,适用于农业领域中相当常见的双峰数据。我们通过最大似然法估计参数。一些模拟表明最大似然估计量是准确的。通过删除案例和分位数残差来检验模型假设。通过来自农业不同领域的三个真实数据集说明了新回归模型的实用性,这些数据呈现出双峰性。