Suppr超能文献

基于具有量子记忆的维格纳-柳泽-戴森斜信息的不确定关系

Uncertainty Relation Based on Wigner-Yanase-Dyson Skew Information with Quantum Memory.

作者信息

Li Jun, Fei Shao-Ming

机构信息

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.

Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany.

出版信息

Entropy (Basel). 2018 Feb 20;20(2):132. doi: 10.3390/e20020132.

Abstract

We present uncertainty relations based on Wigner-Yanase-Dyson skew information with quantum memory. Uncertainty inequalities both in product and summation forms are derived. It is shown that the lower bounds contain two terms: one characterizes the degree of compatibility of two measurements, and the other is the quantum correlation between the measured system and the quantum memory. Detailed examples are given for product, separable and entangled states.

摘要

我们基于具有量子记忆的维格纳 - 亚纳塞 - 戴森斜信息提出了不确定性关系。推导了乘积形式和求和形式的不确定性不等式。结果表明,下限包含两项:一项表征两个测量的相容程度,另一项是被测系统与量子记忆之间的量子关联。针对乘积态、可分态和纠缠态给出了详细示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8b/7512626/3327722ac66d/entropy-20-00132-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验