Suppr超能文献

用于回归问题的高斯过程与多项式混沌展开:通过再生核希尔伯特空间建立联系并通过KL散度进行比较

Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence.

作者信息

Yan Liang, Duan Xiaojun, Liu Bowen, Xu Jin

机构信息

College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.

出版信息

Entropy (Basel). 2018 Mar 12;20(3):191. doi: 10.3390/e20030191.

Abstract

In this paper, we examine two widely-used approaches, the polynomial chaos expansion (PCE) and Gaussian process (GP) regression, for the development of surrogate models. The theoretical differences between the PCE and GP approximations are discussed. A state-of-the-art PCE approach is constructed based on high precision quadrature points; however, the need for truncation may result in potential precision loss; the GP approach performs well on small datasets and allows a fine and precise trade-off between fitting the data and smoothing, but its overall performance depends largely on the training dataset. The reproducing kernel Hilbert space (RKHS) and Mercer's theorem are introduced to form a linkage between the two methods. The theorem has proven that the two surrogates can be embedded in two isomorphic RKHS, by which we propose a novel method named Gaussian process on polynomial chaos basis (GPCB) that incorporates the PCE and GP. A theoretical comparison is made between the PCE and GPCB with the help of the Kullback-Leibler divergence. We present that the GPCB is as stable and accurate as the PCE method. Furthermore, the GPCB is a one-step Bayesian method that chooses the best subset of RKHS in which the true function should lie, while the PCE method requires an adaptive procedure. Simulations of 1D and 2D benchmark functions show that GPCB outperforms both the PCE and classical GP methods. In order to solve high dimensional problems, a random sample scheme with a constructive design (i.e., tensor product of quadrature points) is proposed to generate a valid training dataset for the GPCB method. This approach utilizes the nature of the high numerical accuracy underlying the quadrature points while ensuring the computational feasibility. Finally, the experimental results show that our sample strategy has a higher accuracy than classical experimental designs; meanwhile, it is suitable for solving high dimensional problems.

摘要

在本文中,我们研究了两种广泛使用的方法,即多项式混沌展开(PCE)和高斯过程(GP)回归,用于开发代理模型。讨论了PCE和GP近似之间的理论差异。基于高精度求积点构建了一种先进的PCE方法;然而,截断的需要可能会导致潜在的精度损失;GP方法在小数据集上表现良好,并允许在拟合数据和平滑之间进行精细而精确的权衡,但其整体性能在很大程度上取决于训练数据集。引入再生核希尔伯特空间(RKHS)和默瑟定理以在这两种方法之间建立联系。该定理已证明这两种代理可以嵌入到两个同构的RKHS中,据此我们提出了一种名为基于多项式混沌基的高斯过程(GPCB)的新方法,该方法结合了PCE和GP。借助库尔贝克-莱布勒散度对PCE和GPCB进行了理论比较。我们表明GPCB与PCE方法一样稳定和准确。此外,GPCB是一种一步贝叶斯方法,它选择真实函数应该所在的RKHS的最佳子集,而PCE方法需要一个自适应过程。一维和二维基准函数的模拟表明,GPCB优于PCE和经典GP方法。为了解决高维问题,提出了一种具有构造性设计(即求积点的张量积)的随机采样方案,以生成用于GPCB方法的有效训练数据集。这种方法利用了求积点背后的高数值精度的特性,同时确保了计算的可行性。最后,实验结果表明,我们的采样策略比经典实验设计具有更高的精度;同时,它适用于解决高维问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3cb/7512709/3f4e2fc02e00/entropy-20-00191-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验