Méndez-Bermúdez J A, Aguilar-Sánchez R
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
Entropy (Basel). 2018 Apr 20;20(4):300. doi: 10.3390/e20040300.
We perform a detailed numerical study of the localization properties of the eigenfunctions of one-dimensional (1D) tight-binding wires with on-site disorder characterized by long-tailed distributions: For large ϵ , P ( ϵ ) ∼ 1 / ϵ 1 + α with α ∈ ( 0 , 2 ] ; where ϵ are the on-site random energies. Our model serves as a generalization of 1D Lloyd's model, which corresponds to α = 1 . In particular, we demonstrate that the information length β of the eigenfunctions follows the scaling law β = γ x / ( 1 + γ x ) , with x = ξ / L and γ ≡ γ ( α ) . Here, ξ is the eigenfunction localization length (that we extract from the scaling of Landauer's conductance) and is the wire length. We also report that for α = 2 the properties of the 1D Anderson model are effectively reproduced.
我们对具有由长尾分布表征的在位无序的一维(1D)紧束缚导线的本征函数的局域化特性进行了详细的数值研究:对于大的ϵ,P(ϵ) ∼ 1 / ϵ^(1 + α),其中α ∈ (0, 2];这里ϵ是在位随机能量。我们的模型是1D劳埃德模型的推广,1D劳埃德模型对应于α = 1。特别地,我们证明本征函数的信息长度β遵循标度律β = γx / (1 + γx),其中x = ξ / L且γ ≡ γ(α)。这里,ξ是本征函数局域化长度(我们从朗道尔电导的标度中提取),L是导线长度。我们还报告了对于α = 2,有效地再现了1D安德森模型的性质。