Martínez-Martínez C T, Méndez-Bermúdez J A
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico.
Entropy (Basel). 2019 Jan 18;21(1):86. doi: 10.3390/e21010086.
We study the localization properties of the eigenvectors, characterized by their information entropy, of tight-binding random networks with balanced losses and gain. The random network model, which is based on Erdős-Rényi (ER) graphs, is defined by three parameters: the network size , the network connectivity α , and the losses-and-gain strength γ . Here, and α are the standard parameters of ER graphs, while we introduce losses and gain by including complex self-loops on all vertices with the imaginary amplitude i γ with random balanced signs, thus breaking the Hermiticity of the corresponding adjacency matrices and inducing complex spectra. By the use of extensive numerical simulations, we define a scaling parameter ξ ≡ ξ ( N , α , γ ) that fixes the localization properties of the eigenvectors of our random network model; such that, when ξ < 0.1 ( 10 < ξ ), the eigenvectors are localized (extended), while the localization-to-delocalization transition occurs for 0.1 < ξ < 10 . Moreover, to extend the applicability of our findings, we demonstrate that for fixed ξ , the spectral properties (characterized by the position of the eigenvalues on the complex plane) of our network model are also universal; i.e., they do not depend on the specific values of the network parameters.
我们研究了具有平衡损耗和增益的紧束缚随机网络中本征向量的局域化特性,其特征由信息熵来表征。基于厄多斯 - 雷尼(ER)图的随机网络模型由三个参数定义:网络规模 、网络连通性α以及损耗 - 增益强度γ。这里, 和α是ER图的标准参数,而我们通过在所有顶点上包含具有随机平衡符号的虚部幅度为iγ的复自环来引入损耗和增益,从而打破相应邻接矩阵的厄米性并产生复谱。通过广泛的数值模拟,我们定义了一个标度参数ξ≡ξ(N,α,γ),它确定了我们随机网络模型本征向量的局域化特性;即,当ξ<0.1(10<ξ)时,本征向量是局域化的(扩展的),而局域化到非局域化的转变发生在0.1<ξ<10时。此外,为了扩展我们研究结果的适用性,我们证明对于固定的ξ,我们网络模型的谱特性(由复平面上本征值的位置表征)也是通用的;也就是说,它们不依赖于网络参数的具体值。