Suppr超能文献

强耦合下的量子热力学:算符热力学函数与关系

Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations.

作者信息

Hsiang Jen-Tsung, Hu Bei-Lok

机构信息

Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China.

Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742-4111, USA.

出版信息

Entropy (Basel). 2018 May 31;20(6):423. doi: 10.3390/e20060423.

Abstract

Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski's two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for quantum systems. We mention noteworthy subtleties for quantum thermodynamics at strong coupling, such as in issues related to energy and entropy, and possible ambiguities of their operator forms. We end by indicating some fruitful pathways for further developments.

摘要

识别或构建一个在特定条件下能从已知宏观理论中涌现出来的细粒度微观理论,始终是一项艰巨的挑战。热力学或许是物理科学中最强大的理论之一,也是涌现现象最容易理解的例子之一,它可用于从涌现结构以及支配有效或集体变量的涌现规律两方面,理解涌现过程的特征和机制。将量子力学视为一种涌现理论需要对此有更深入的理解。在这项工作中,我们的目标较为适度,并非将量子力学视为热力学,目前还做不到,而是关注量子系统的热力学,即量子热力学。我们将展示,即便只是这样一个最低要求,仍有许多新问题需要解决,新规则需要制定。低温下与具有非马尔可夫行为的热浴强耦合的小型量子多体系统的热力学,包含了诸如量子相干、关联、纠缠和涨落等元素,这些在基于与非动态储能器弱耦合到可以忽略不计的大系统构建的传统热力学中并未得到充分认识。对于强耦合下的量子热力学,人们需要重新审视热力学函数的意义、热力学关系的可行性以及热力学定律的有效性。在简要阐述动机之后,本文首先对基于格林 & 托斯以及塞弗特的量子表述进行简短概述。然后我们给出雅津斯基两种表示的量子表述。我们展示如何构建算符热力学势,其期望值给出常见的热力学变量。构建算符热力学函数并验证或修正它们的关系,是为量子系统建立可行的热力学理论的必要第一步。我们提及强耦合下量子热力学中值得注意的微妙之处,比如与能量和熵相关的问题,以及它们算符形式可能存在的模糊性。最后我们指出一些富有成效的进一步发展途径。

相似文献

1
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations.
Entropy (Basel). 2018 May 31;20(6):423. doi: 10.3390/e20060423.
2
Thermodynamics and stochastic thermodynamics of strongly coupled systems.
Phys Rev E. 2024 Mar;109(3-1):034105. doi: 10.1103/PhysRevE.109.034105.
3
Coherence and measurement in quantum thermodynamics.
Sci Rep. 2016 Feb 26;6:22174. doi: 10.1038/srep22174.
5
Gauge-Invariant Quantum Thermodynamics: Consequences for the First Law.
Entropy (Basel). 2024 Jan 25;26(2):111. doi: 10.3390/e26020111.
6
Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036102. doi: 10.1103/PhysRevE.66.036102. Epub 2002 Sep 5.
7
Quantum thermodynamics of single particle systems.
Sci Rep. 2020 Aug 11;10(1):13500. doi: 10.1038/s41598-020-70450-y.

引用本文的文献

3
Quantum Thermodynamics in the Refined Weak Coupling Limit.
Entropy (Basel). 2019 Jul 25;21(8):725. doi: 10.3390/e21080725.
4
Emergent Quantum Mechanics: David Bohm Centennial Perspectives.
Entropy (Basel). 2019 Jan 26;21(2):113. doi: 10.3390/e21020113.

本文引用的文献

2
Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining.
Phys Rev E. 2017 Jun;95(6-1):062101. doi: 10.1103/PhysRevE.95.062101. Epub 2017 Jun 1.
3
Open system trajectories specify fluctuating work but not heat.
Phys Rev E. 2016 Aug;94(2-1):022143. doi: 10.1103/PhysRevE.94.022143. Epub 2016 Aug 29.
4
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Rep Prog Phys. 2016 May;79(5):056001. doi: 10.1088/0034-4885/79/5/056001. Epub 2016 Apr 18.
5
First and Second Law of Thermodynamics at Strong Coupling.
Phys Rev Lett. 2016 Jan 15;116(2):020601. doi: 10.1103/PhysRevLett.116.020601. Epub 2016 Jan 12.
6
Quantum thermodynamics: a nonequilibrium Green's function approach.
Phys Rev Lett. 2015 Feb 27;114(8):080602. doi: 10.1103/PhysRevLett.114.080602. Epub 2015 Feb 25.
7
Nonequilibrium entropy production for open quantum systems.
Phys Rev Lett. 2011 Sep 30;107(14):140404. doi: 10.1103/PhysRevLett.107.140404.
8
Hamiltonian of mean force for damped quantum systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031110. doi: 10.1103/PhysRevE.84.031110. Epub 2011 Sep 7.
9
Specific heat anomalies of open quantum systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061105. doi: 10.1103/PhysRevE.79.061105. Epub 2009 Jun 9.
10
Quantum mechanical evolution towards thermal equilibrium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061103. doi: 10.1103/PhysRevE.79.061103. Epub 2009 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验