群熵、相关定律和黎曼ζ函数。
Group entropies, correlation laws, and zeta functions.
作者信息
Tempesta Piergiulio
机构信息
Departamento de Física Teórica II, Facultad de Físicas, Ciudad Universitaria, Universidad Complutense, E-28040 Madrid, Spain.
出版信息
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.
提出了群熵的概念。它能够统一和推广文献中已知的许多不同的熵的定义,例如玻尔兹曼 - 吉布斯熵、Tsallis熵、阿部熵和卡尼亚达基斯熵。引入了其他熵泛函,这些熵泛函与非平凡关联定律相关,这些定律表征了动力学为弱混沌时非平衡系统的普适类。讨论了相关的热统计学。我们构建的数学基础是形式群论,它提供了粒子间关联的一般结构,并规定了相关的熵泛函。作为应用示例,说明了群熵在信息论中的作用,并提出了库尔贝克 - 莱布勒散度的推广。建立了统计力学与zeta函数之间的新联系。特别地,Tsallis熵与经典黎曼zeta函数相关。