Suppr超能文献

属性网络中用于社区检测的耦合节点相似性学习

Coupled Node Similarity Learning for Community Detection in Attributed Networks.

作者信息

Meng Fanrong, Rui Xiaobin, Wang Zhixiao, Xing Yan, Cao Longbing

机构信息

School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China.

School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China.

出版信息

Entropy (Basel). 2018 Jun 17;20(6):471. doi: 10.3390/e20060471.

Abstract

Attributed networks consist of not only a network structure but also node attributes. Most existing community detection algorithms only focus on network structures and ignore node attributes, which are also important. Although some algorithms using both node attributes and network structure information have been proposed in recent years, the complex hierarchical coupling relationships within and between attributes, nodes and network structure have not been considered. Such hierarchical couplings are driving factors in community formation. This paper introduces a novel coupled node similarity (CNS) to involve and learn attribute and structure couplings and compute the similarity within and between nodes with categorical attributes in a network. CNS learns and integrates the frequency-based intra-attribute coupled similarity within an attribute, the co-occurrence-based inter-attribute coupled similarity between attributes, and coupled attribute-to-structure similarity based on the homophily property. CNS is then used to generate the weights of edges and transfer a plain graph to a weighted graph. Clustering algorithms detect community structures that are topologically well-connected and semantically coherent on the weighted graphs. Extensive experiments verify the effectiveness of CNS-based community detection algorithms on several data sets by comparing with the state-of-the-art node similarity measures, whether they involve node attribute information and hierarchical interactions, and on various levels of network structure complexity.

摘要

属性网络不仅由网络结构组成,还包括节点属性。大多数现有的社区检测算法仅关注网络结构,而忽略了同样重要的节点属性。尽管近年来已经提出了一些同时使用节点属性和网络结构信息的算法,但属性、节点和网络结构内部以及它们之间复杂的层次耦合关系尚未得到考虑。这种层次耦合是社区形成的驱动因素。本文引入了一种新颖的耦合节点相似度(CNS),以纳入并学习属性与结构的耦合,并计算网络中具有分类属性的节点内部和节点之间的相似度。CNS学习并整合了基于频率的属性内耦合相似度、基于共现的属性间耦合相似度以及基于同质性的属性与结构耦合相似度。然后,CNS用于生成边的权重,并将无向图转换为加权图。聚类算法在加权图上检测拓扑连接良好且语义连贯的社区结构。通过与最先进的节点相似度度量进行比较,广泛的实验验证了基于CNS的社区检测算法在多个数据集上的有效性,无论这些度量是否涉及节点属性信息和层次交互,以及在不同层次的网络结构复杂性上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e3/7512989/c267dce2918c/entropy-20-00471-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验