Suppr超能文献

网络编码的热力学以及最大熵原理的算法改进。

The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy.

作者信息

Zenil Hector, Kiani Narsis A, Tegnér Jesper

机构信息

Algorithmic Dynamics Lab, Karolinska Institute, 17177 Stockholm, Sweden.

Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, 17177 Stockholm, Sweden.

出版信息

Entropy (Basel). 2019 Jun 3;21(6):560. doi: 10.3390/e21060560.

Abstract

The principle of maximum entropy (Maxent) is often used to obtain prior probability distributions as a method to obtain a Gibbs measure under some restriction giving the probability that a system will be in a certain state compared to the rest of the elements in the distribution. Because classical entropy-based Maxent collapses cases confounding all distinct degrees of randomness and pseudo-randomness, here we take into consideration the generative mechanism of the systems considered in the ensemble to separate objects that may comply with the principle under some restriction and whose entropy is maximal but may be generated recursively from those that are actually algorithmically random offering a refinement to classical Maxent. We take advantage of a causal algorithmic calculus to derive a thermodynamic-like result based on how difficult it is to reprogram a computer code. Using the distinction between computable and algorithmic randomness, we quantify the cost in information loss associated with reprogramming. To illustrate this, we apply the algorithmic refinement to Maxent on graphs and introduce a Maximal Algorithmic Randomness Preferential Attachment (MARPA) Algorithm, a generalisation over previous approaches. We discuss practical implications of evaluation of network randomness. Our analysis provides insight in that the reprogrammability asymmetry appears to originate from a non-monotonic relationship to algorithmic probability. Our analysis motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogrammability, and computation.

摘要

最大熵原理(Maxent)通常用于获得先验概率分布,作为在某些限制条件下获得吉布斯测度的一种方法,该测度给出了系统处于某一状态的概率与分布中其他元素的概率之比。由于基于经典熵的Maxent无法区分所有不同程度的随机性和伪随机性,在这里,我们考虑了系综中所考虑系统的生成机制,以区分在某些限制条件下可能符合该原理且熵最大的对象,以及那些实际上是算法随机的对象,这些对象可以从算法随机的对象中递归生成,从而对经典Maxent进行了改进。我们利用因果算法演算,根据重新编程计算机代码的难度得出一个类似热力学的结果。利用可计算性和算法随机性之间的区别,我们量化了与重新编程相关的信息损失成本。为了说明这一点,我们将算法改进应用于图上的Maxent,并引入了最大算法随机偏好依附(MARPA)算法,这是对先前方法的一种推广。我们讨论了评估网络随机性的实际意义。我们的分析表明,重新编程不对称性似乎源于与算法概率的非单调关系。我们的分析促使人们进一步分析上述不对称性、重新编程能力和计算的起源及后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/227c/7515049/a0a41a32669d/entropy-21-00560-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验