Yan Liang, Duan Xiaojun, Liu Bowen, Xu Jin
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410000, China.
Entropy (Basel). 2018 Aug 9;20(8):594. doi: 10.3390/e20080594.
Bayesian optimization (BO) based on the Gaussian process (GP) surrogate model has attracted extensive attention in the field of optimization and design of experiments (DoE). It usually faces two problems: the unstable GP prediction due to the ill-conditioned Gram matrix of the kernel and the difficulty of determining the trade-off parameter between exploitation and exploration. To solve these problems, we investigate the K-optimality, aiming at minimizing the condition number. Firstly, the Sequentially Bayesian K-optimal design (SBKO) is proposed to ensure the stability of the GP prediction, where the K-optimality is given as the acquisition function. We show that the SBKO reduces the integrated posterior variance and maximizes the hyper-parameters' information gain simultaneously. Secondly, a K-optimal enhanced Bayesian Optimization (KO-BO) approach is given for the optimization problems, where the K-optimality is used to define the trade-off balance parameters which can be output automatically. Specifically, we focus our study on the K-optimal enhanced Expected Improvement algorithm (KO-EI). Numerical examples show that the SBKO generally outperforms the Monte Carlo, Latin hypercube sampling, and sequential DoE approaches by maximizing the posterior variance with the highest precision of prediction. Furthermore, the study of the optimization problem shows that the KO-EI method beats the classical EI method due to its higher convergence rate and smaller variance.
基于高斯过程(GP)代理模型的贝叶斯优化(BO)在优化与实验设计(DoE)领域引起了广泛关注。它通常面临两个问题:由于核的Gram矩阵病态导致的GP预测不稳定,以及确定利用和探索之间权衡参数的困难。为了解决这些问题,我们研究了K-最优性,旨在最小化条件数。首先,提出了顺序贝叶斯K-最优设计(SBKO)以确保GP预测的稳定性,其中将K-最优性作为采集函数。我们表明,SBKO降低了积分后验方差并同时最大化了超参数的信息增益。其次,针对优化问题给出了一种K-最优增强贝叶斯优化(KO-BO)方法,其中K-最优性用于定义可自动输出的权衡平衡参数。具体而言,我们重点研究了K-最优增强期望改进算法(KO-EI)。数值例子表明,SBKO通过以最高预测精度最大化后验方差,总体上优于蒙特卡罗、拉丁超立方抽样和顺序DoE方法。此外,对优化问题的研究表明,KO-EI方法由于其更高的收敛速度和更小的方差而优于经典EI方法。