Kim Woojae, Pitt Mark A, Lu Zhong-Lin, Steyvers Mark, Myung Jay I
Department of Psychology, Ohio State University, Columbus, OH 43210, U.S.A.
Neural Comput. 2014 Nov;26(11):2465-92. doi: 10.1162/NECO_a_00654. Epub 2014 Aug 22.
Experimentation is at the core of research in the behavioral and neural sciences, yet observations can be expensive and time-consuming to acquire (e.g., MRI scans, responses from infant participants). A major interest of researchers is designing experiments that lead to maximal accumulation of information about the phenomenon under study with the fewest possible number of observations. In addressing this challenge, statisticians have developed adaptive design optimization methods. This letter introduces a hierarchical Bayes extension of adaptive design optimization that provides a judicious way to exploit two complementary schemes of inference (with past and future data) to achieve even greater accuracy and efficiency in information gain. We demonstrate the method in a simulation experiment in the field of visual perception.
实验是行为科学和神经科学研究的核心,但获取观察数据可能成本高昂且耗时(例如,核磁共振成像扫描、婴儿参与者的反应)。研究人员的一个主要兴趣在于设计实验,以便用尽可能少的观察次数,最大程度地积累有关所研究现象的信息。为应对这一挑战,统计学家开发了自适应设计优化方法。本文介绍了自适应设计优化的层次贝叶斯扩展,它提供了一种明智的方法,利用两种互补的推理方案(结合过去和未来的数据),在信息获取方面实现更高的准确性和效率。我们在视觉感知领域的模拟实验中展示了该方法。