Renger D R Michiel
Weierstrass Institute (WIAS), Mohrenstrasse 39, 10117 Berlin, Germany.
Entropy (Basel). 2018 Aug 9;20(8):596. doi: 10.3390/e20080596.
In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager-Machlup relations. Of particular interest is the case where the microscopic system consists of random particles, and the macroscopic quantity is the empirical measure or concentration. In this work we take the particle flux as the macroscopic quantity, which is related to the concentration via a continuity equation. By a similar argument the large deviations can induce a generalised gradient or GENERIC system in the space of fluxes. In a general setting we study how flux gradient or GENERIC systems are related to gradient systems of concentrations. This shows that many gradient or GENERIC systems arise from an underlying gradient or GENERIC system where fluxes rather than densities are being driven by (free) energies. The arguments are explained by the example of reacting particle systems, which is later expanded to include spatial diffusion as well.
在之前的一项工作中,我们设计了一个框架,按照昂萨格 - 马赫卢普关系的思路,从一个基础微观系统的大偏差中推导出一个演化方程的广义梯度系统。特别令人感兴趣的是微观系统由随机粒子组成且宏观量为经验测度或浓度的情况。在这项工作中,我们将粒子通量作为宏观量,它通过一个连续性方程与浓度相关。通过类似的论证,大偏差可以在通量空间中诱导出一个广义梯度或 GENERIC 系统。在一般情况下,我们研究通量梯度或 GENERIC 系统如何与浓度梯度系统相关。这表明许多梯度或 GENERIC 系统源自一个基础的梯度或 GENERIC 系统,在该系统中通量而非密度由(自由)能量驱动。这些论证通过反应粒子系统的例子进行解释,该例子随后还扩展到包括空间扩散的情况。