Puentes Paola Ruiz, Henao María C, Torres Carlos E, Gómez Saúl C, Gómez Laura A, Burgos Juan C, Arbeláez Pablo, Osma Johann F, Muñoz-Camargo Carolina, Reyes Luis H, Cruz Juan C
Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia.
Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia.
Antibiotics (Basel). 2020 Nov 30;9(12):854. doi: 10.3390/antibiotics9120854.
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
现代生物技术面临的挑战之一是寻找新途径来减轻对传统抗生素的耐药性。抗菌肽(AMPs)是一类替代型生物分子,天然存在于多种生物体中,有能力应对当前微生物耐药性的威胁。在此,我们回顾了我们最近为开发一个基于细菌基因组固有多样性的非合理生产的抗菌肽新文库所做的努力,并将其与合理设计的文库进行了比较。我们的方法基于一个四阶段工作流程,该流程融合了四种主要新兴技术(人工智能、分子动力学、微生物表面展示和微流控)的最新进展之间的相互作用。实施这个框架具有挑战性,因为为了获得可靠的结果,用于搜索候选抗菌肽的计算机算法需要克服现有方法的问题,这些问题限制了在超大型数据库中进行多空间数据分布分析的可能性。我们期望通过使用一种基于深度学习模型的最新开发的分类算法来应对这一挑战,该模型依赖于卷积层和门控循环单元。这将通过精心定制的分子动力学模拟来补充,以阐明与脂质双层的特定相互作用。候选抗菌肽将在微生物表面进行重组表达,通过基于不同液滴的微流控策略进行进一步筛选,以鉴定具有所需裂解能力的抗菌肽。我们相信,所提出的方法为搜索和筛选用于其他应用的生物活性肽开辟了机会。