Suppr超能文献

基于上下文相似度的国家技术绩效分析

A Context Similarity-Based Analysis of Countries' Technological Performance.

作者信息

Napoletano Andrea, Tacchella Andrea, Pietronero Luciano

机构信息

Institute for Complex Systems-CNR, Via dei Taurini 19, 00185 Rome, Italy.

International Finance Corporation-World Bank Group, Washington, DC 20433, USA.

出版信息

Entropy (Basel). 2018 Oct 31;20(11):833. doi: 10.3390/e20110833.

Abstract

This work contributes to the literature in the field of innovation by proposing a quantitative approach for the prediction of the timing and location of patenting activity. In a recent work, it was shown that focusing on couples of technological codes allows for the formation of testable predictions of innovation events, defined as the first time two codes appear together in a patent. In particular, the construction of the vector space of codes and the introduction of the metric allows for a quantitative analysis of technological progress. Here, we move from that result and we show that, through , it is possible to assign to countries a score which measures the probability of being the first to patent a potential innovation. In other words, we show that we can not only estimate the likelihood that a potential innovation will be patented in the imminent future, but also forecast where it will be patented.

摘要

这项工作通过提出一种预测专利活动时间和地点的定量方法,为创新领域的文献做出了贡献。在最近的一项工作中,研究表明,关注技术代码对有助于形成对创新事件的可测试预测,创新事件被定义为两个代码首次在一项专利中同时出现。特别是,代码向量空间的构建和度量的引入使得对技术进步进行定量分析成为可能。在此,我们基于该结果展开研究,并表明,通过[具体方法未提及],可以为各国赋予一个分数,该分数衡量一个国家率先为一项潜在创新申请专利的概率。换句话说,我们表明我们不仅可以估计一项潜在创新在不久的将来获得专利的可能性,还可以预测它将在何处获得专利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aa3/7512395/23602b9931c2/entropy-20-00833-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验