Martel-Escobar María, Vázquez-Polo Francisco-José, Hernández-Bastida Agustín
Department of Quantitative Methods, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
Department of Quantitative Methods, University of Granada, 18071 Granada, Spain.
Entropy (Basel). 2018 Dec 1;20(12):919. doi: 10.3390/e20120919.
Problems in statistical auditing are usually one-sided. In fact, the main interest for auditors is to determine the quantiles of the total amount of error, and then to compare these quantiles with a given fixed by the auditor, so that the accounting statement can be accepted or rejected. Dollar unit sampling (DUS) is a useful procedure to collect sample information, whereby items are chosen with a probability proportional to book amounts and in which the relevant error amount distribution is the distribution of the taints weighted by the book value. The likelihood induced by DUS refers to a 201-variate parameter p but the prior information is in a subparameter θ linear function of p , representing the total amount of error. This means that partial prior information must be processed. In this paper, two main proposals are made: (1) to modify the likelihood, to make it compatible with prior information and thus obtain a Bayesian analysis for hypotheses to be tested; (2) to use a maximum entropy prior to incorporate limited auditor information. To achieve these goals, we obtain a modified likelihood function inspired by the induced likelihood described by Zehna (1966) and then adapt the Bayes' theorem to this likelihood in order to derive a posterior distribution for θ . This approach shows that the DUS methodology can be justified as a natural method of processing partial prior information in auditing and that a Bayesian analysis can be performed even when prior information is only available for a subparameter of the model. Finally, some numerical examples are presented.
统计审计中的问题通常是片面的。实际上,审计人员的主要兴趣在于确定误差总量的分位数,然后将这些分位数与审计人员给定的固定值进行比较,以便决定会计报表是否可以接受。美元单位抽样(DUS)是一种收集样本信息的有用方法,按照这种方法,项目按照与账面价值成比例的概率被选中,其中相关误差量的分布是由账面价值加权的污点分布。由DUS诱导的似然性涉及一个201维参数p,但先验信息存在于p的一个子参数θ的线性函数中,该子参数表示误差总量。这意味着必须处理部分先验信息。本文提出了两个主要建议:(1)修改似然性,使其与先验信息兼容,从而获得用于待检验假设的贝叶斯分析;(2)使用最大熵先验来纳入有限的审计人员信息。为实现这些目标,我们受Zehna(1966)描述的诱导似然性启发,得到一个修改后的似然函数,然后将贝叶斯定理应用于该似然性,以推导θ的后验分布。这种方法表明,DUS方法可以作为审计中处理部分先验信息的一种自然方法而得到合理证明,并且即使先验信息仅适用于模型的一个子参数,也可以进行贝叶斯分析。最后,给出了一些数值例子。