Suppr超能文献

基于质心的散度聚类

Centroid-Based Clustering with -Divergences.

作者信息

Sarmiento Auxiliadora, Fondón Irene, Durán-Díaz Iván, Cruces Sergio

机构信息

Departamento de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los descubrimientos, S/N, 41092 Sevilla, Spain.

出版信息

Entropy (Basel). 2019 Feb 19;21(2):196. doi: 10.3390/e21020196.

Abstract

Centroid-based clustering is a widely used technique within unsupervised learning algorithms in many research fields. The success of any centroid-based clustering relies on the choice of the similarity measure under use. In recent years, most studies focused on including several divergence measures in the traditional hard -means algorithm. In this article, we consider the problem of centroid-based clustering using the family of α β -divergences, which is governed by two parameters, α and β . We propose a new iterative algorithm, α β --means, giving closed-form solutions for the computation of the sided centroids. The algorithm can be fine-tuned by means of this pair of values, yielding a wide range of the most frequently used divergences. Moreover, it is guaranteed to converge to local minima for a wide range of values of the pair ( α , β ). Our theoretical contribution has been validated by several experiments performed with synthetic and real data and exploring the ( α , β ) plane. The numerical results obtained confirm the quality of the algorithm and its suitability to be used in several practical applications.

摘要

基于质心的聚类是许多研究领域中无监督学习算法里广泛使用的技术。任何基于质心的聚类的成功都依赖于所使用的相似性度量的选择。近年来,大多数研究集中于在传统硬均值算法中纳入多种散度度量。在本文中,我们考虑使用由两个参数α和β控制的αβ散度族进行基于质心的聚类问题。我们提出一种新的迭代算法,即αβ均值算法,它为单侧质心的计算给出了闭式解。该算法可以通过这一对值进行微调,从而产生范围广泛的最常用散度。此外,对于这一对值(α, β)的广泛取值范围,它保证能收敛到局部最小值。我们的理论贡献已通过使用合成数据和真实数据进行的多个实验以及对(α, β)平面的探索得到验证。所获得的数值结果证实了该算法的质量及其在多个实际应用中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e94/7514678/dd11b79931c1/entropy-21-00196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验