Suppr超能文献

一种基于β散度的免疫组织化学染色无监督半定量方法。

A Method for Unsupervised Semi-Quantification of Inmunohistochemical Staining with Beta Divergences.

作者信息

Sarmiento Auxiliadora, Durán-Díaz Iván, Fondón Irene, Tomé Mercedes, Bodineau Clément, Durán Raúl V

机构信息

Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Avda. Descubrimientos S/N, 41092 Seville, Spain.

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.

出版信息

Entropy (Basel). 2022 Apr 13;24(4):546. doi: 10.3390/e24040546.

Abstract

In many research laboratories, it is essential to determine the relative expression levels of some proteins of interest in tissue samples. The semi-quantitative scoring of a set of images consists of establishing a scale of scores ranging from zero or one to a maximum number set by the researcher and assigning a score to each image that should represent some predefined characteristic of the IHC staining, such as its intensity. However, manual scoring depends on the judgment of an observer and therefore exposes the assessment to a certain level of bias. In this work, we present a fully automatic and unsupervised method for comparative biomarker quantification in histopathological brightfield images. The method relies on a color separation method that discriminates between two chromogens expressed as brown and blue colors robustly, independent of color variation or biomarker expression level. For this purpose, we have adopted a two-stage stain separation approach in the optical density space. First, a preliminary separation is performed using a deconvolution method in which the color vectors of the stains are determined after an eigendecomposition of the data. Then, we adjust the separation using the non-negative matrix factorization method with beta divergences, initializing the algorithm with the matrices resulting from the previous step. After that, a feature vector of each image based on the intensity of the two chromogens is determined. Finally, the images are annotated using a systematically initialized k-means clustering algorithm with beta divergences. The method clearly defines the initial boundaries of the categories, although some flexibility is added. Experiments for the semi-quantitative scoring of images in five categories have been carried out by comparing the results with the scores of four expert researchers yielding accuracies that range between 76.60% and 94.58%. These results show that the proposed automatic scoring system, which is definable and reproducible, produces consistent results.

摘要

在许多研究实验室中,确定组织样本中某些感兴趣蛋白质的相对表达水平至关重要。一组图像的半定量评分包括建立一个分数范围,从零或一到研究人员设定的最大数字,并为每张图像分配一个分数,该分数应代表免疫组化染色的一些预定义特征,如染色强度。然而,人工评分依赖于观察者的判断,因此评估存在一定程度的偏差。在这项工作中,我们提出了一种用于组织病理学明场图像中比较生物标志物定量的全自动且无监督的方法。该方法依赖于一种颜色分离方法,该方法能够稳健地区分以棕色和蓝色表示的两种色原,而不受颜色变化或生物标志物表达水平的影响。为此,我们在光密度空间中采用了两阶段染色分离方法。首先,使用去卷积方法进行初步分离,在对数据进行特征分解后确定染色的颜色向量。然后,我们使用具有β散度的非负矩阵分解方法调整分离,用上一步得到的矩阵初始化算法。之后,基于两种色原的强度确定每张图像的特征向量。最后,使用具有β散度的系统初始化k均值聚类算法对图像进行标注。该方法明确地定义了类别的初始边界,尽管增加了一些灵活性。通过将结果与四位专家研究人员的评分进行比较,对五类图像的半定量评分进行了实验,准确率在76.60%至94.58%之间。这些结果表明,所提出的可定义且可重复的自动评分系统产生了一致的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验